Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

1.
H.
Moravec
,
AI Mag.
9
,
61
(
1988
).
2.
Q.
Meng
,
F.
Yao
, and
Y.
Wu
,
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, Beijing (
IEEE
,
Piscataway, NJ
,
2006
), p.
1164
.
3.
K. -W.
Jörg
and
M.
Berg
,
Rob. Auton. Syst.
25
,
241
(
1998
).
4.
Á.
Hernández
,
J.
Ureña
,
D.
Hernanz
,
J. J.
García
,
M.
Mazo
,
J. -P.
Dérutin
,
J.
Serot
, and
S. E.
Palazuelos
,
Microprocessors and Microsystems
27
,
397
(
2003
).
5.
Á.
Hernández
,
J.
Ureña
,
J. J.
García
,
M.
Mazo
,
D.
Hernanz
,
J. -P.
Dérutin
, and
J.
Sérot
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
1660
(
2004
).
6.
Z. X.
Ding
and
P. A.
Payne
,
Meas. Sci. Technol.
1
,
158
(
1990
).
7.
J.
Ureña
,
M.
Mazo
,
J. J.
García
,
Á.
Hernández
, and
E.
Bueno
,
Microprocessors and Microsystems
23
,
25
(
1999
).
8.
L.
Fortuna
,
M.
Frasca
, and
A.
Rizzo
,
IEEE Trans. Instrum. Meas.
52
,
1809
(
2003
).
9.
Q. -H.
Meng
,
Y.
Zhang
,
Q.
Liang
, and
J.
Wang
,
Proceedings of the IASTED International Conference Robotics and Applications
, Cambridge, USA (
IASTED
,
Anaheim, CA
,
2005
), p.
279
.
10.
Q.
Meng
,
Q.
Liang
, and
J.
Li
,
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, Beijing (
IEEE
,
Piscataway, NJ
,
2006
), p.
2465
.
11.
K.
Nakahira
,
T.
Kodama
,
T.
Furuhashi
, and
S.
Okuma
,
Meas. Sci. Technol
.
15
,
347
(
2004
).
12.
K.
Nakahira
,
T.
Kodama
,
T.
Furuhashi
, and
H.
Maede
,
IEEE Trans. Instrum. Meas.
54
,
305
(
2005
).
13.
K. R.
Griep
,
J. A.
Ritcey
, and
J. J.
Burlingame
,
IEEE Trans. Aerosp. Electron. Syst.
31
,
752
(
1995
).
14.
Q. -H.
Meng
,
S. -Y.
Lan
,
Z. -J.
Yao
, and
G. -W.
Li
,
IEEE Trans. Instrum. Meas.
58
,
3442
(
2009
).
15.
Z. -J.
Yao
,
Q. -H.
Meng
,
G. -W.
Li
, and
P.
Lin
,
Proceedings of 2008 IEEE Ultrasonics Symposium
, Beijing (
IEEE
,
Piscataway, NJ
,
2008
), p.
729
.
16.
K.
Deb
,
A.
Pratap
,
S.
Agarwal
, and
T.
Meyarivan
,
IEEE Trans. Evol. Comput.
6
,
182
(
2002
).
17.
Y.
Jiang
,
Commun. Math. Phys.
172
,
449
(
1995
).
You do not currently have access to this content.