Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500°C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200°C to 2.0μm/h at 400°C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

1.
J. N.
Harb
and
E. E.
Smith
,
Prog. Energy Combust. Sci.
16
,
169
(
1990
).
2.
R. W.
Bryers
,
Prog. Energy Combust. Sci.
22
,
29
(
1996
).
3.
B.
Dooley
and
P.
Chang
,
Power Plant Chem.
2
,
4
(
2000
).
4.
A. J. B.
Cultler
,
T.
Flatley
, and
K. A.
Hay
,
J. Combust.
12
,
17
(
1980
).
5.
R. D.
Kane
,
Corrosioneering Newsletter
(
InterCorr International, Inc.
,
Houston
,
2002
).
6.
K.
Natesan
,
A.
Purohit
, and
D. L.
Rink
,
Proceedings of the 16th Annual Conference on Fossil Energy Materials
, Baltimore, MD,
2002
(unpublished).
7.
K.
Natesan
and
J. H.
Park
,
Int. J. Hydrogen Energy
32
,
3689
(
2007
).
8.
C. E.
Jaske
,
J. A.
Beavers
, and
N. G.
Thompson
,
Proceedings of the Fourth International Conference on Process Plant Reliability
, Houston, TX,
1995
, (unpublished).
9.
ASTM G96–90 Standard Guide for Online Monitoring of Corrosion in Plant Equipment (Electrical and Electrochemical Methods)
(
ASTM International
,
West Conshohocken
,
2001
).
10.
M.
McKenzie
and
P. R.
Vassie
,
Br. Corros. J., London
20
,
117
(
1985
).
11.
D. R.
Bergstrom
,
J. Mater. Eng. Perform.
20
,
17
(
1981
).
12.
V. K.
Seth
and
A. A.
Sagues
,
Corrosion 83
(
NACE
,
Houston
,
1983
).
13.
D. C.
Crowe
and
R. A.
Yeske
,
J. Mater. Eng. Perform.
25
,
18
(
1986
).
14.
D. M.
Farrell
,
W. Y.
Mok
, and
L. W.
Pinder
,
Mater. Sci. Eng., A
120–121
,
651
(
1989
).
15.
G.
Gao
,
F. H.
Stott
,
J. L.
Dawson
, and
D. M.
Farrell
,
Oxid. Met.
33
,
79
(
1990
).
16.
K. A.
Davis
,
G. C.
Green
,
T.
Linjewile
, and
S.
Harding
,
Proceedings of the Joint International Combustion Symposium AFRC/JFRC/IEA
, Kauai, HI,
2001
(unpublished).
17.
K.
Hladky
and
J. L.
Dawson
,
Corros. Sci.
22
,
231
(
1982
).
18.
K.
Hladky
and
J. L.
Dawson
,
Corros. Sci.
21
,
317
(
1981
).
19.
P. R.
Roberge
,
R.
Beauudon
, and
V. S.
Sastri
,
Corros. Sci.
29
,
1231
(
1989
).
20.
S.
Magaino
,
Corros. Eng.
37
,
629
(
1988
).
You do not currently have access to this content.