Diversified research interests in scanning laser microscopy nowadays require broadband capability of the optical system. Although an all-mirror-based optical design with a suitable metallic coating is appropriate for broad-spectrum applications from ultraviolet to terahertz, most researchers prefer lens-based scanning systems despite the drawbacks of a limited spectral range, ghost reflection, and chromatic aberration. One of the main concerns is that the geometrical aberration induced by off-axis incidence on spherical mirrors significantly deteriorates image resolution. Here, we demonstrate a novel geometrical design of a spherical-mirror-based scanning system in which off-axis aberrations, both astigmatism and coma, are compensated to reach diffraction-limited performance. We have numerically simulated and experimentally verified that this scanning system meets the Marechàl condition and provides high Strehl ratio within a 3°×3° scanning area. Moreover, we demonstrate second-harmonic-generation imaging from starch with our new design. A greatly improved resolution compared to the conventional mirror-based system is confirmed. This scanning system will be ideal for high-resolution linear/nonlinear laser scanning microscopy, ophthalmoscopic applications, and precision fabrications.

1.
W.
Denk
,
J. H.
Strickler
, and
W. W.
Webb
,
Science
248
,
73
(
1990
).
2.
P. J.
Campagnola
,
M. D.
Wei
,
A.
Lewis
, and
L. M.
Loew
,
Biophys. J.
77
,
3341
(
1999
).
3.
S.
Sakai
,
M.
Yamanari
,
A.
Miyazawa
,
M.
Matsumoto
,
N.
Nakagawa
,
T.
Sugawara
,
K.
Kawabata
,
T.
Yatagai
, and
Y.
Yasuno
,
J. Invest. Dermatol.
128
,
1641
(
2008
).
4.
A.
Roorda
,
F.
Romero-Borja
,
W. J.
Donnelly
,
H.
Queener
,
T. J.
Hebert
, and
M. C. W.
Campbell
,
Opt. Express
10
,
405
(
2002
).
5.
R. H.
Webb
,
G. W.
Hughes
, and
F. C.
Delori
,
Appl. Opt.
26
,
1492
(
1987
).
6.
D. L.
Bourell
,
H. L.
Marcus
,
J. W.
Barlow
, and
J. J.
Beaman
,
Int. J. Powder Metall.
28
,
369
(
1992
).
7.
S.
Kawata
,
H. B.
Sun
,
T.
Tanaka
, and
K.
Takada
,
Nature (London)
412
,
697
(
2001
).
8.
D.
Wildanger
,
E.
Rittweger
,
L.
Kastrup
, and
S. W.
Hell
,
Opt. Express
16
,
9614
(
2008
).
9.
H.
Yokoyama
,
H.
Tsubokawa
,
H. C.
Guo
,
J.
Shikata
,
K.
Sato
,
K.
Takashima
,
K.
Kashiwagi
,
N.
Saito
,
H.
Taniguchi
, and
H.
Ito
,
J. Biomed. Opt.
12
,
054019
(
2007
).
10.
11.
F.
Ganikhanov
,
S.
Carrasco
,
X. S.
Xie
,
M.
Katz
,
W.
Seitz
, and
D.
Kopf
,
Opt. Lett.
31
,
1292
(
2006
).
12.
Y.
Tzeng
,
Y.
Lin
,
C.
Huang
,
J.
Liu
,
H.
Chui
,
H.
Liu
,
J.
Stone
,
J.
Knight
, and
S.
Chu
,
Opt. Express
17
,
7304
(
2009
).
13.
M.
Ghotbi
,
A.
Esteban-Martin
, and
M.
Ebrahim-Zadeh
,
Opt. Lett.
33
,
345
(
2008
).
14.
T. D.
Wang
,
S. T.
Lin
,
Y. Y.
Lin
,
A. C.
Chiang
, and
Y. C.
Huang
,
Opt. Express
16
,
6471
(
2008
).
15.
C. S.
Colley
,
J. C.
Hebden
,
D. T.
Delpy
,
A. D.
Cambrey
,
R. A.
Brown
,
E. A.
Zibik
,
W. H.
Ng
,
L. R.
Wilson
, and
J. W.
Cockburn
,
Rev. Sci. Instrum.
78
,
123108
(
2007
).
16.
K.
Grieve
,
P.
Tiruveedhula
,
Y. H.
Zhang
, and
A.
Roorda
,
Opt. Express
14
,
12230
(
2006
).
17.
H.
Gross
,
H.
Zugge
,
M.
Peschka
, and
F.
Blechinger
,
Handbook of Optical Systems
,
Aberration Theory and Correction of Optical Systems
(
Wiley
,
Weinheim
,
2005
), Vol.
3
.
18.
J. B.
Pawley
,
Handbook of Biological Confocal Microscopy
(
Plenum
,
New York
,
1990
), Chap. 9.
You do not currently have access to this content.