The surface conductivity measurement system using a micro-four-point probe (M4PP) had been developed for the ultrahigh vacuum transmission electron microscope (UHV-TEM). Since the current distribution in the sample crystals during the current voltage measurement by the M4PP is localized within the depth of several micrometers from the surface, the system is sensitive to the surface conductivity, which is related with the surface superstructure. It was installed in the main chamber of the TEM and the surface conductivity can be measured in situ. The surface structures were observed by reflection electron microscopy and diffraction (REM-RHEED). REM-RHEED enables us to observe the surface superstructures and their structure defects such as surface atomic steps and domain boundaries of the surface superstructure. Thus the effects of the defects on the surface conductivity can be investigated. In the present paper we present the surface conductivity measurement system and its application to the Si(111)-3×3-Ag surface prepared on the Si(111) vicinal surfaces. The result clearly showed that the surface conductivity was affected by step configuration.

1.
I.
Shiraki
,
F.
Tanabe
,
R.
Hobara
,
T.
Nagao
, and
S.
Hasegawa
,
Surf. Sci.
493
,
633
(
2001
).
2.
H.
Grube
,
B.
Craig Harrison
,
J.
Jia
, and
J. J.
Boland
,
Rev. Sci. Instrum.
72
,
4388
(
2001
).
3.
H.
Okamoto
and
D.
Chen
,
Rev. Sci. Instrum.
72
,
4398
(
2001
).
4.
O.
Kubo
,
Y.
Shingaya
,
M.
Nakaya
,
M.
Aono
, and
T.
Nakayama
,
Appl. Phys. Lett.
88
,
254101
(
2006
).
5.
H.
Watanabe
,
C.
Manabe
,
T.
Shigematsu
, and
M.
Shimizu
,
Appl. Phys. Lett.
78
,
2928
(
2001
).
6.
O.
Guise
,
H.
Marbach
,
J. T.
Yates
, Jr.
,
M. -C.
Jung
, and
J.
Levy
,
Rev. Sci. Instrum.
76
,
045107
(
2005
).
7.
S.
Yoshimoto
,
Y.
Murata
,
K.
Kubo
,
K.
Tomita
,
K.
Motoyoshi
,
T.
Kimura
,
H.
Okino
,
R.
Hobara
,
I.
Matsuda
,
S.
Honda
,
M.
Katayama
, and
S.
Hasegawa
,
Nano Lett.
7
,
956
(
2007
).
8.
H.
Okino
,
I.
Matsuda
,
R.
Hobara
,
Y.
Hosomura
,
S.
Hasegawa
, and
P. A.
Bennett
,
e-J. Surf. Sci. Nanotechnol.
3
,
362
(
2005
).
9.
I.
Matsuda
,
T.
Hirahara
,
M.
Ueno
,
R.
Hobara
, and
S.
Hasegawa
,
J. de Physique (France)
IV 132
,
57
(
2006
).
10.
T.
Kanagawa
,
R.
Hobara
,
I.
Matsuda
,
T.
Tanikawa
,
A.
Natori
, and
S.
Hasegawa
,
Phys. Rev. Lett.
91
,
036805
(
2003
).
11.
I.
Matsuda
,
M.
Ueno
,
T.
Hirahara
,
R.
Hobara
,
H.
Morikawa
,
C.
Lui
, and
S.
Hasegawa
,
Phys. Rev. Lett.
93
,
236801
(
2004
).
12.
Y.
Kondo
,
K.
Yagi
,
K.
Kobayashi
,
H.
Kobayashi
,
Y.
Yanaka
,
K.
Kise
, and
T.
Ohkawa
,
Ultramicroscopy
36
,
142
(
1991
).
13.
C. L.
Petersen
,
F.
Grey
,
I.
Shiraki
, and
S.
Hasegawa
,
Appl. Phys. Lett.
77
,
3782
(
2000
).
14.
H.
Minoda
and
K.
Yagi
,
Phys. Rev. B
59
,
2363
(
1999
).
15.
H.
Minoda
and
K.
Yagi
,
Surf. Sci.
437
,
L761
(
1999
).
16.
H.
Minoda
,
H.
Yazawa
,
M.
Morita
,
S. N.
Takeda
, and
H.
Daimon
(unpublished).
You do not currently have access to this content.