The production of enriched para-H2 is useful for many scientific applications, but the technology for producing and measuring para-H2 is not yet widespread. In this note and in the accompanying auxiliary material, we describe the design, construction, and use of a versatile standalone converter that is capable of producing para-H2 enrichments of up to 99.99% at continuous flow rates of up to 0.4 SLM. We also discuss para-H2 storage and back conversion rates, and improvements to three techniques (thermal conductance, NMR, and solid hydrogen impurity spectroscopy) used to quantify the para-H2 enrichment.

1.
S. B.
Duckett
and
C. J.
Sleigh
,
Prog. Nucl. Magn. Reson. Spectrosc.
34
,
71
(
1999
).
2.
T.
Momose
and
T.
Shida
,
Bull. Chem. Soc. Jpn.
71
,
1
(
1998
).
3.
L.
Andrews
and
X.
Wang
,
Rev. Sci. Instrum.
75
,
3039
(
2004
).
4.
M. E.
Fajardo
and
S.
Tam
,
J. Chem. Phys.
108
,
4237
(
1998
).
5.
Y. -P.
Lee
,
Y. -J.
Wu
, and
J. T.
Hougen
,
J. Chem. Phys.
129
,
104502
(
2008
).
6.
A. C.
Clark
,
X.
Lin
, and
M. H. W.
Chan
,
Phys. Rev. Lett.
97
,
245301
(
2006
).
7.
H.
Kreckel
,
M.
Motsch
,
J.
Mikosch
,
J.
Glosík
,
R.
Plašil
,
S.
Altevogt
,
V.
Andrianarijaona
,
H.
Buhr
,
J.
Hoffmann
,
L.
Lammich
,
M.
Lestinsky
,
I.
Nevo
,
S.
Novotny
,
D. A.
Orlov
,
H. B.
Pedersen
,
F.
Sprenger
,
A. S.
Terekhov
,
J.
Toker
,
R.
Wester
,
D.
Gerlich
,
D.
Schwalm
,
A.
Wolf
, and
D.
Zajfman
,
Phys. Rev. Lett.
95
,
263201
(
2005
).
8.
H.
Kreckel
,
A.
Petrignani
,
M.
Berg
,
D.
Bing
,
S.
Reinhardt
,
S.
Altevogt
,
H.
Buhr
,
M.
Froese
,
J.
Hoffmann
,
B.
Jordon-Thaden
,
C.
Krantz
,
M.
Lestinksy
,
M.
Mendes
,
O.
Novotný
,
S.
Novotny
,
H. B.
Pedersen
,
D. A.
Orlov
,
J.
Mikosch
,
R.
Wester
,
R.
Plašil
,
J.
Glosík
,
D.
Schwalm
,
D.
Zajfman
, and
A.
Wolf
,
J. Phys.: Conf. Ser.
88
,
012064
(
2007
).
9.
A.
Petrignani
,
H.
Kreckel
,
M. H.
Berg
,
S.
Altevogt
,
D.
Bing
,
H.
Buhr
,
M.
Froese
,
J.
Hoffmann
,
B.
Jordon-Thaden
,
C.
Krantz
,
M. B.
Mendes
,
O.
Novotný
,
S.
Novotny
,
D. A.
Orlov
,
S.
Reinhardt
, and
A.
Wolf
, arXiv:0810.0405v1.
10.
B. A.
Tom
,
V.
Zhaunerchyk
,
M. B.
Wiczer
,
A. A.
Mills
,
K. N.
Crabtree
,
M.
Kaminska
,
W. D.
Geppert
,
M.
Hamberg
,
M.
af Ugglas
,
E.
Vigren
,
W. J.
van der Zande
,
M.
Larsson
,
R. D.
Thomas
, and
B. J.
McCall
,
J. Chem. Phys.
130
,
031101
(
2009
).
11.
D.
Gerlich
,
E.
Herbst
, and
E.
Roueff
,
Planet. Space Sci.
50
,
1275
(
2002
).
12.
M.
Cordonnier
,
D.
Uy
,
R. M.
Dickson
,
K. E.
Kerr
,
Y.
Zhang
, and
T.
Oka
,
J. Chem. Phys.
113
,
3181
(
2000
).
13.
D.
Gerlich
,
J. Chem. Phys.
92
,
2377
(
1990
).
14.
D.
Uy
,
M.
Cordonnier
, and
T.
Oka
,
Phys. Rev. Lett.
78
,
3844
(
1997
).
15.
J. P.
Darr
,
A. C.
Crowther
,
R. A.
Loomis
,
S. E.
Ray
, and
A. B.
McCoy
,
J. Phys. Chem. A
111
,
13387
(
2007
).
16.
K. F.
Bonhoeffer
and
P.
Harteck
,
Z. Phys. Chem.
B4
,
113
(
1929
).
17.
S.
Tam
and
M.
Fajardo
,
Rev. Sci. Instrum.
70
,
1926
(
1999
).
18.
See EPAPS Document No. E-RSINAK-80-007902 for more detailed information about the para-hydrogen converter and the thermal conductance, NMR, and solid hydrogen measurement techniques. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
19.
A.
Farkas
,
Orthohydrogen, Parahydrogen, and Heavy Hydrogen
(
Cambridge University Press
,
Cambridge
,
1935
), p.
20
.
20.
A. T.
Stewart
and
G. L.
Squires
,
J. Sci. Instrum.
32
,
26
(
1955
).
21.
M. J.
Assael
,
M.
Dix
,
A.
Lucas
, and
W. A.
Wakeham
,
J. Chem. Soc., Faraday Trans. 1
77
,
439
(
1981
).
22.
C.
Szńtay
, Jr.
,
TrAC, Trends Anal. Chem.
11
,
332
(
1992
).
23.
D. P.
Weliky
,
K. E.
Kerr
,
T. J.
Byers
,
Y.
Zhang
,
T.
Momose
, and
T.
Oka
,
J. Chem. Phys.
105
,
4461
(
1996
).
24.
K.
Yoshioka
and
D. T.
Anderson
,
J. Chem. Phys.
119
,
4731
(
2003
).

Supplementary Material

You do not currently have access to this content.