In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles 0.110μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of Fr2.7±0.1. We employ this system to measure the stiffness of SR2+Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments.

1.
Measuring Biological Responses with Automated Microscopy
,
Methods in Enzymology
Vol.
414
, edited by
J.
Inglese
(
Elsevier
,
New York
,
2006
).
2.
P.
Janmey
and
C.
McCulloch
,
Annu. Rev. Biomed. Eng.
9
,
1
(
2007
).
3.
C.
Bustamante
,
J.
Macosko
, and
G.
Wuite
,
Nat. Rev. Mol. Cell Biol.
1
,
130
(
2000
).
4.
Y. -C.
Fung
,
Biomechanics: Mechanical Properties of Living Tissues
(
Springer
,
New York
,
2005
).
5.
U.
Dürig
,
G.
Cross
,
M.
Despont
,
U.
Drechsler
,
W.
Häberle
,
M.
Lutwyche
,
H.
Rothuizen
,
R.
Stutz
,
R.
Widmer
,
P.
Vettiger
 et al,
Tribol. Lett.
9
,
25
(
2000
).
6.
A.
Bausch
,
W.
Moller
, and
E.
Sackmann
,
Biophys. J.
76
,
573
(
1999
).
7.
B.
Fabry
,
G.
Maksym
,
J.
Butler
,
M.
Glogauer
,
D.
Navajas
, and
J.
Fredberg
,
Phys. Rev. Lett.
87
,
148102
(
2001
).
8.
N.
Wang
,
J.
Butler
, and
D.
Ingber
,
Science
260
,
1124
(
1993
).
9.
R.
Hubmayr
,
S.
Shore
,
J.
Fredberg
,
E.
Planus
,
R.
Panettieri
,
W.
Moller
,
J.
Heyder
, and
N.
Wang
,
Am. J. Physiol.: Cell Physiol.
271
,
1660
(
1996
).
10.
G.
Lenormand
,
P.
Bursac
,
J.
Butler
, and
J.
Fredberg
,
Phys. Rev. E
76
,
041901
(
2007
).
11.
T.
Lele
,
J.
Sero
,
B.
Matthews
,
S.
Kumar
,
S.
Xia
,
M.
Montoya-Zavala
,
T.
Polte
,
D.
Overby
,
N.
Wang
, and
D.
Ingber
,
Methods Cell Biol.
83
,
443
(
2007
).
12.
J.
Dobson
,
Nanomedicine
1
,
31
(
2006
).
13.
C.
Plank
,
U.
Schillinger
,
F.
Scherer
,
C.
Bergemann
,
J.
Rémy
,
F.
Krötz
,
M.
Anton
,
J.
Lausier
, and
J.
Rosenecker
,
Biol. Chem.
384
,
737
(
2003
).
14.
T. A.
Waigh
,
Rep. Prog. Phys.
68
,
685
(
2005
).
15.
F.
MacKintosh
and
C.
Schmidt
,
Curr. Opin. Colloid Interface Sci.
4
,
300
(
1999
).
16.
V.
Breedveld
and
D. J.
Pine
,
J. Mater. Sci.
38
,
4461
(
2003
).
17.
K.
Neuman
and
S.
Block
,
Rev. Sci. Instrum.
75
,
2787
(
2004
).
18.
J.
Fisher
,
L.
Vicci
,
J.
Cribb
,
E.
O’Brien
,
R.
Taylor
, and
R.
Superfine
,
NANO
1
,
191
(
2006
).
19.
J.
Fisher
,
J.
Cribb
,
K.
Desai
,
L.
Vicci
,
B.
Wilde
,
K.
Keller
,
R.
Taylor
,
J.
Haase
,
K.
Bloom
,
E.
OBrien
 et al,
Rev. Sci. Instrum.
77
,
023702
(
2006
).
20.
J.
Fisher
,
J.
Cummings
,
K.
Desai
,
L.
Vicci
,
B.
Wilde
,
K.
Keller
,
C.
Weigle
,
G.
Bishop
,
R.
Taylor
,
C.
Davis
 et al,
Rev. Sci. Instrum.
76
,
053711
(
2005
).
21.
Eschbach’s Handbook of Engineering Fundamentals
, 4th ed., edited by
B. D.
Tapley
(
Wiley
,
New York
,
1990
).
22.
S.
Rogers
and
G.
Rogers
,
Nat. Protocols
3
,
606
(
2008
).
23.
M.
Puig-de Morales
,
E.
Millet
,
B.
Fabry
,
D.
Navajas
,
N.
Wang
,
J.
Butler
, and
J.
Fredberg
,
Am. J. Physiol.: Cell Physiol.
287
,
643
(
2004
).
24.
G.
Giannone
and
M.
Sheetz
,
Trends Cell Biol.
16
,
213
(
2006
).
You do not currently have access to this content.