Scanning thermal microscope-detected ferromagnetic resonance (SThM-FMR) combines a thermal near-field microscope with a FMR spectrometer and detects the thermal response due to resonant microwave absorption by measuring the resistivity change in the thermal nanoprobe. The advantage of this technique is to provide imaging capabilities at fixed resonance conditions as well as local microwave spectroscopy at the nanoscale. A technique that uses the same setup but detects the thermoelastic response of the sample is the scanning thermoelastic microscope-detected FMR (SThEM-FMR). This latter technique is advantageous when FMR spectra of single nanostructures have to be recorded at a fixed position. The experimental setups and the signal generation processes of SThM/SThEM-FMR are described in detail. With the SThM-FMR setups a temperature resolution of 1mK and a local resolution of 30nm are actually achieved. With SThEM-FMR the obtained local resolution is 10nm. The detection limits of both techniques can be as low as 106 spins. To demonstrate the potential of these new techniques SThM/SThEM-FMR investigations of local magnetic anisotropies, magnetization dynamics of single nanodots and inhomogeneous FMR excitations due to finite size effects are presented. Simultaneously, information on the magnetic parameters, the topography, and the thermal properties is provided. To describe the further potential of this recently developed SThM-FMR technique, combined magnetoresistance and FMR investigations are presented and an outlook on possible future applications is given.

1.
Overview about magnetic random access memory: http://www.mram-info.com
2.
L.
Thomas
,
M.
Hayashi
,
X.
Jiang
,
R.
Moriya
,
C.
Rettner
, and
S.
Parkin
,
Science
315
,
1553
(
2007
).
3.
S.
Demokritov
and
B.
Hillebrands
, in
Magnetic Structures I
, edited by
B.
Hillebrands
and
K.
Ounadjela
(
Springer
,
Berlin
,
2002
).
4.
J. C.
Slonczewski
,
J. Magn. Magn. Mater.
159
,
L1
(
1996
).
5.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
6.
L. A.
Bottomley
,
Anal. Chem.
70
,
425R
(
1998
).
7.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
(
Clarendon
,
Oxford
,
1959
).
8.
G.
Grigull
and
H.
Sandner
,
Wärmeleitung
(
Springer
,
Berlin
,
1988
).
9.
Y. S.
Touloukian
,
Thermal Radiative Properties—Thermophysical Properties of Matter
(
Plenum
,
New York
,
1970
), Vol.
7
.
10.
J.
Bolte
,
F.
Niebisch
,
P.
Stelmaszyk
,
A. D.
Wieck
, and
J.
Pelzl
,
J. Appl. Phys.
84
,
6917
(
1998
);
J.
Bolte
, Ph.D. thesis,
Ruhr-Universität Bochum
,
1999
.
11.
B. K.
Bein
,
J.
Bolte
,
A.
Haj-Daoud
,
G.
Kalus
,
F.
Macedo
,
A.
Linnenbrügger
,
H.
Bosse
, and
J.
Pelzl
,
Surf. Coat. Technol.
116–119
,
147
(
1999
).
12.
A.
Rosencwaig
, in
Advances in Photoacoustic and Thermal Wave Phenomena in Semiconductors
, edited by
A.
Mandelis
(
North Holland
,
New York
,
1987
).
13.
D.
Dietzel
,
R.
Meckenstock
,
S.
Chotikaprakham
,
J.
Bolte
,
J.
Pelzl
,
R.
Aubry
,
J. C.
Jacquet
, and
S.
Cassette
,
Superlattices Microstruct.
35
,
477
(
2004
).
14.
D.
Fournier
and
B. C.
Forget
, Microtherm. report,
2001
.
15.
D.
Dietzel
,
B. K.
Bein
, and
J.
Pelzl
,
J. Appl. Phys.
93
,
9043
(
2003
).
16.
A.
Majumdar
,
J. P.
Carrejo
, and
J.
Lai
,
Appl. Phys. Lett.
62
,
2501
(
1993
).
17.
R. B.
Dinwiddie
,
J. J.
Pylkky
, and
P. E.
West
,
Therm. Conduct.
22
,
668
(
1993
).
18.
J. K.
Gimzewski
,
C.
Gerber
,
E.
Meyer
, and
R. R.
Schlitter
,
Chem. Phys. Lett.
217
,
589
(
1994
).
19.
M.
Chirtoc
,
X.
Filip
,
J. F.
Herny
,
J. S.
Antoniow
,
I.
Chirtoc
,
D.
Dietzel
,
R.
Meckenstock
, and
J.
Pelzl
,
Superlattices Microstruct.
35
,
305
(
2004
).
20.
R.
Meckenstock
,
M. V.
Rastei
, and
J. P.
Bucher
,
J. Appl. Phys.
95
,
6753
(
2004
).
21.
A.
Majumdar
,
Annu. Rev. Mater. Sci.
29
,
505
(
1999
).
22.
S.
Gomes
,
N.
Trannoy
, and
Ph.
Grossel
,
Meas. Sci. Technol.
10
,
805
(
1999
).
23.
Veeco, Dimensions 3000 Manual.
24.
J.
Varesi
and
A.
Majumdar
,
Appl. Phys. Lett.
72
,
37
(
1998
).
25.
L. D.
Landau
and
E. M.
Lifshitz
,
Phys. Z. Sowjetunion
8
,
153
(
1935
);
G. V.
Skrotskii
and
L. V.
Kurbatov
, in
Feromagnetic Resonance
, edited by
S. V.
Vonsovskii
(
Pergamon
,
New York
,
1966
).
26.
B.
Heinrich
and
J. F.
Cochran
,
Adv. Phys.
42
,
523
(
1993
);
J.
Lindner
,
U.
Wiedwald
,
K.
Baberschke
,
M.
Farle
,
J. Vac. Sci. Technol. A
23
,
796
(
2005
).
28.
J. H.
van Vleck
,
Phys. Rev.
52
,
1178
(
1937
).
29.
R. I.
Joseph
and
E.
Schlömann
,
J. Appl. Phys.
36
,
1579
(
1965
).
30.
Object oriented micromagnetic framework (OOMMF), http://www.math.nist.gov/oommf, vers. 1.2.0.3.
31.
C.
Poole
,
Electron Spin Resonance
(
Mac Graw-Hill
,
New York
,
1967
).
32.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
Wiley
,
New York
,
1995
).
33.
Z.
Frait
and
D.
Fraitová
, in
Spin Waves and Magnetic Excitations
, edited by
A. S.
Borovik-Romanov
and
S. K.
Sinha
(
Elsevier Science
,
Amsterdam
,
1988
).
34.
Z.
Frait
,
D.
Fraitová
,
C.
Dufour
,
P.
Mangin
, and
G.
Marchal
,
IEEE Trans. Magn.
30
,
711
(
1994
).
35.
J. C.
Slater
,
Rev. Mod. Phys.
18
,
441
(
1946
).
36.
R.
Meckenstock
, Ph.D. thesis,
Ruhr-Universität Bochum
,
1997
.
37.
B.
Lax
and
K. J.
Button
, in
Microwave Ferrites and Ferrimagnetics
(
McGraw-Hill
,
New York
,
1962
).
38.
R.
Meckenstock
,
O.
von Geisau
,
J. A.
Wolf
, and
J.
Pelzl
,
J. Appl. Phys.
77
,
6424
(
1995
);
R.
Meckenstock
,
K.
Harms
,
O.
von Geisau
, and
J.
Pelzl
,
J. Appl. Phys.
79
,
8607
(
1996
).
39.
Gnome X scanning microscopy project (GXSM), http://gxsm.sourceforge.net/index.php
40.
A.
Hammiche
,
D. J.
Hourston
,
H. M.
Pollock
,
M.
Reading
, and
M.
Song
,
J. Vac. Sci. Technol. B
14
,
1486
(
1996
).
41.
V. V.
Gorbunov
,
N.
Fuchigami
,
J. L.
Hazel
, and
V. V.
Tsukruk
,
Langmuir
15
,
8340
(
1999
).
42.
O.
von Geisau
,
R.
Meckenstock
,
F.
Schreiber
, and
J.
Pelzl
,
J. Phys. IV
4
,
C7
133
(
1994
).
43.
W.
Kiepert
,
H.-J.
Obramski
,
R.
Meckenstock
,
D.
Fournier
,
U.
Zammit
, and
J.
Pelzl
,
Supplement to Vol. 6 of Progress in Natural Science
(
Taylor & Francis
,
London
,
1996
), p.
515
.
44.
R.
Meckenstock
,
D.
Spoddig
, and
J.
Pelzl
,
J. Magn. Magn. Mater.
240
,
83
(
2002
).
45.
R.
Meckenstock
and
J.
Pelzl
,
J. Appl. Phys.
81
,
5259
(
1997
).
46.
A. D.
Wieck
and
D.
Reuter
,
Inst. Phys. Conf. Ser.
166
,
51
(
2000
).
47.
L.
Ruppel
,
G.
Witte
,
Ch.
Wöll
,
T.
Last
,
S. F.
Fischer
, and
U.
Kunze
,
Phys. Rev. B
66
,
245307
(
2002
).
48.
R.
Meckenstock
,
D.
Spoddig
, and
J.
Pelzl
,
Microsc. Microanal.
8
,
1340
(
2002
);
R.
Meckenstock
,
D.
Spoddig
,
D.
Dietzel
,
J. P.
Bucher
, and
J.
Pelzl
,
Rev. Sci. Instrum.
74
,
789
(
2003
).
49.
J. L.
Bubendorff
,
J.
Pflaum
,
E.
Huebner
,
D.
Raiser
,
J. P.
Bucher
, and
J.
Pelzl
,
J. Magn. Magn. Mater.
165
,
199
(
1997
);
J.-L.
Bubendorff
, Ph.D. thesis,
Strassbourg
,
1997
.
50.
S. M.
Bhagat
and
P.
Lubitz
,
Phys. Rev. B
10
,
179
(
1974
).
51.
Z.
Frait
and
B.
Heinrich
,
J. Appl. Phys.
35
,
904
(
1964
).
52.
J.
Lindner
,
K.
Lenz
,
E.
Kosubek
,
K.
Baberschke
,
D.
Spoddig
,
R.
Meckenstock
,
J.
Pelzl
,
Z.
Frait
, and
D. L.
Mills
,
Phys. Rev. B
68
,
060102
(
2003
).
53.
M. H.
Seavey
 Jr.
,
J. Appl. Phys.
31
,
S216
(
1960
).
54.
A. O.
Adeyeye
,
R. P.
Cowburn
, and
M. E.
Welland
,
J. Appl. Phys.
87
,
299
(
2000
).
55.
A.
Nait Abit
and
J. P.
Bucher
,
Appl. Phys. Lett.
82
,
430
(
2003
).
57.
A. N.
Bogdanov
,
U. K.
Rössler
, and
K.-H.
Müller
,
J. Magn. Magn. Mater.
242–245
,
594
(
2002
).
58.
B.
Hausmanns
,
T. P.
Krome
,
G.
Dumpich
,
E. F.
Wassermann
,
D.
Hinzke
,
U.
Nowak
, and
K. D.
Usadel
,
J. Magn. Magn. Mater.
240
,
297
(
2002
).
59.
P. M.
Levy
and
S.
Zhang
,
Phys. Rev. Lett.
79
,
5110
(
1997
).
60.
B.
Hausmanns
,
G.
Dumpich
, and
K. D.
Usadel
(private communication).
61.
B.
Bein
and
J.
Pelzl
, in
Plasma Diagnostics: Surface Analysis and Interaction
, edited by
O.
Auciello
and
D. L.
Flamm
(
Academic
,
San Diego
,
1989
), Vol.
2
.
62.
Yu. A.
Filimonov
,
A. V.
Butko
,
A. V.
Kozhevnikov
,
A. A.
Veselov
,
S. L.
Vysotsky
, and
S. A.
Nikitov
,
Proc. SPIE
5401
,
525
(
2004
).
63.
R.
Meckenstock
,
A.
Butko
,
I.
Barsukov
,
D.
Spoddig
,
O.
Posth
, and
J.
Lindner
,
Appl. Phys. Lett.
91
,
142507
(
2007
).
64.
O.
von Geisau
and
J.
Pelzl
, in
High Frequency Processes in Magnetic Materials
, edited by
G.
Srinivasan
and
A. N.
Slavin
(
World Scientific
,
River Edge, New Jersey
,
1995
).
65.
S.
Demokritov
,
B.
Hillebrands
, and
A. N.
Slavin
,
Phys. Rep.
348
,
441
(
2001
).
66.
Ultrathin Magnetic Structures
, edited by
J. A. C.
Bland
and
B.
Heinrich
(
Springer
,
Berlin
,
2004
), Vol
III
/
IV
.
67.
B. T.
Rosner
and
D. W.
van der Weide
,
Rev. Sci. Instrum.
73
,
2505
(
2002
).
68.
A.
Bauer
,
Habilitationsschrift
(
Universität Berlin Press
,
Berlin
,
2000
);
e.g.,
B. L.
Petersen
,
A.
Bauer
,
G.
Meyer
,
T.
Crecelius
, and
G.
Kaindel
,
Appl. Phys. Lett.
73
,
538
(
1998
).
69.
R.
Meckenstock
,
M.
Möller
, and
D.
Spoddig
,
Appl. Phys. Lett.
86
,
112506
(
2005
).
70.
M.
Möller
,
D.
Spoddig
, and
R.
Meckenstock
,
J. Appl. Phys.
99
,
08J310
(
2006
).
71.
72.
D. A.
Arena
,
E.
Vescovo
,
C.-C.
Kao
,
Y.
Guan
, and
W. E.
Bailey
,
J. Appl. Phys.
101
,
09C109
(
2007
).
73.
J. A.
Sidles
,
J. L.
Bruland
,
D.
Rugar
,
O.
Züger
,
S.
Hoen
, and
C. S.
Yanmoni
,
Rev. Mod. Phys.
67
,
249
(
1995
).
74.
Z.
Zang
,
P. C.
Hammel
,
M.
Midzor
,
M. L.
Roukes
, and
J. R.
Childress
,
Appl. Phys. Lett.
73
,
2036
(
1998
).
75.
S.-H.
Chao
,
W. M.
Dougherty
,
J. L.
Garbini
, and
J. A.
Sidles
,
Rev. Sci. Instrum.
75
,
1175
(
2004
).
76.
A.
Volodin
,
D.
Buntinx
,
S.
Brems
, and
C.
Van Haesendonck
,
Appl. Phys. Lett.
85
,
5935
(
2004
).
77.
H. J.
Mamin
,
M.
Poggio
,
C. L.
Degen
, and
D.
Rugar
,
Nat. Nanotechnol.
2
,
301
(
2007
).
78.
S. M.
Anlage
,
D. E.
Steinhauer
,
B. J.
Feenstra
,
C. P.
Vlahacos
, and
F. C.
Wellstood
, arXiv:cond-mat/0001075v2;
Microwave Superconductivity
, edited by
H.
Weinstock
and
M.
Nisenoff
(
Kluwer
,
Amsterdam
,
2001
).
79.
80.
K.
Zakeri
,
I.
Barsukov
,
M. K.
Utochkina
,
F.
Römer
,
J.
Lindner
,
R.
Meckenstock
,
U.
von Hörsten
,
H.
Wende
,
W.
Keune
,
M.
Farle
,
S. S.
Kalarickal
,
K.
Lenz
, and
Z.
Frait
, “
Magnetic properties of epitaxial Fe3SiMgO(001) thin films
,”
Phys. Rev. B
(to be published).
81.
R.
Narkowcz
,
D.
Suter
, and
R.
Stonies
,
J. Magn. Reson.
175
,
275
(
2005
).
You do not currently have access to this content.