In this paper heavy negative-ion sources which we developed and their applications for materials science are reviewed. Heavy negative ions can be effectively produced by the ejection of a sputtered atom through the optimally cesiated surface of target with a low work function. Then, enough continuous negative-ion currents for materials-science applications can be obtained. We developed several kinds of sputter-type heavy negative-ion sources such as neutral- and ionized-alkaline metal bombardment-type heavy negative-ion source and rf-plasma sputter type. In the case where a negative ion is irradiated on a material surface, surface charging seldom takes place because incoming negative charge of the negative ion is well balanced with outgoing negative charge of the released secondary electron. In the negative-ion implantation into an insulator or insulated conductive material, high precision implantation processing with charge-up free properties can be achieved. Negative-ion implantation technique, therefore, can be applied to the following novel material processing systems: the surface modification of micrometer-sized powders, the nanoparticle formation in an insulator for the quantum devices, and the nerve cell growth manipulation by precise control of the biocompatibility of polymer surface. When a negative ion with low kinetic energy approaches the solid surface, the kinetic energy causes the interatomic bonding (kinetic bonding), and formation of a metastable material is promoted. Carbon films with high constituent of sp3 bonding, therefore, can be formed by carbon negative-ion beam deposition.

1.
J.
Ishikawa
,
H.
Tsuji
,
Y.
Gotoh
, and
Azegami
,
AIP Conf. Proc.
287
,
66
(
1992
).
2.
J.
Ishikawa
,
Y.
Takeiri
,
H.
Tsuji
,
T.
Taya
, and
T.
Takagi
,
Nucl. Instrum. Methods Phys. Res. B
4
,
186
(
1984
).
3.
J.
Ishikawa
,
H.
Tsuji
,
Y.
Okada
,
M.
Shinoda
, and
Y.
Gotoh
,
Vacuum
44
,
203
(
1993
).
4.
H.
Tsuji
,
J.
Ishikawa
,
Y.
Okayama
,
Y.
Toyota
, and
Y.
Gotoh
,
Proceedings of the Ion Implantation Technology, 1994
(
Elsevier
,
Amsterdam
,
1995
), p.
495
.
5.
J.
Ishikawa
,
H.
Tsuji
,
Y.
Toyota
,
Y.
Gotoh
,
K.
Matsuda
,
M.
Tanjo
, and
S.
Sakai
,
Nucl. Instrum. Methods Phys. Res. B
96
,
7
(
1995
).
6.
J.
Ishikawa
,
Surf. Coat. Technol.
65
,
64
(
1994
).
7.
J.
Ishikawa
,
Beam-Solid Interaction for Materials Synthesis and Characterization
,
MRS Symposia Proceedings No. 354
(
Material Research Society
,
Pittsburgh
,
1995
), p.
99
.
8.
J.
Ishikawa
,
Rev. Sci. Instrum.
65
,
1290
(
1994
).
9.
J.
Ishikawa
,
H.
Tsuji
,
M.
Mimura
,
S.
Ikemura
, and
Y.
Gotoh
,
Surf. Coat. Technol.
103/104
,
173
(
1998
).
10.
J.
Ishikawa
,
H.
Tsuji
,
N.
Arai
,
T.
Matsumoto
,
K.
Ueno
,
K.
Adachi
,
H.
Kotaki
, and
Y.
Gotoh
,
Nucl. Instrum. Methods Phys. Res. B
237
,
422
(
2005
).
11.
H.
Tsuji
,
N.
Arai
,
N.
Gotho
,
T.
Minotani
,
K.
Kojima
,
K.
Adachi
,
H.
Kotaki
,
T.
Ishibashi
,
Y.
Gotho
, and
J.
Ishikawa
,
Nucl. Instrum. Methods Phys. Res. B
257
,
94
(
2007
).
12.
H.
Tsuji
,
M.
Izukawa
,
R.
Ikeguchi
,
R.
Kakinoki
,
H.
Sato
,
Y.
Gotoh
, and
J.
Ishikawa
,
Nucl. Instrum. Methods Phys. Res. B
206
,
507
(
2003
).
13.
H.
Tsuji
,
M.
Izukawa
,
Y.
Utagawa
,
R.
Ikeguchi
,
R.
Kakinoki
,
H.
Sato
,
Y.
Gotoh
, and
J.
Ishikawa
,
Trans. Mater. Res. Soc. Jpn.
29
,
575
(
2004
).
14.
J.
Ishikawa
,
New Horizons for Materials
(
Techna
,
Faenza
,
1995
), p.
399
.
15.
J.
Ishikawa
,
Y.
Takeiri
, and
T.
Takagi
,
Rev. Sci. Instrum.
57
,
1512
(
1993
).
16.
H.
Tsuji
,
J.
Ishikawa
,
T.
Tomita
,
T.
Yoshihara
, and
T.
Gotoh
,
Rev. Sci. Instrum.
69
,
884
(
1998
).
17.
G. D.
Alton
,
Y.
Mori
,
A.
Takagi
,
A.
Ueno
, and
S.
Fukumoto
,
Rev. Sci. Instrum.
61
,
372
(
1990
).
18.
J.
Ishikawa
,
H.
Tsuji
, and
T.
Maekawa
,
Vacuum
39
,
1129
(
1989
).
19.
J.
Ishikawa
,
Y.
Takeiri
, and
T.
Takagi
,
Rev. Sci. Instrum.
57
,
8
1512
(
1986
).
20.
H.
Tsuji
,
J.
Ishikawa
,
T.
Tomita
, and
Y.
Gotoh
,
Rev. Sci. Instrum.
67
,
3
1012
(
1996
).
21.
H.
Tsuji
,
J.
Ishikawa
,
T.
Tomita
, and
Y.
Gotoh
,
Proceedings of the 11th International Conference on Ion Implantation Technology, 1996
(
IEEE
,
New York
,
1997
), p.
334
.
22.
J.
Ishikawa
,
Recent Progress in Acceleration Beam Application Proceedings of the Seventh International Symposium on Advanced Nuclear Energy Research
,
Takasaki
,
1997
, p.
149
.
23.
J.
Ishikawa
,
Rev. Sci. Instrum.
67
,
1410
(
1996
).
24.
H.
Tsuji
,
J.
Ishikawa
,
S.
Ikeda
, and
Y.
Gotoh
,
Nucl. Instrum. Methods Phys. Res. B
127/128
,
278
(
1997
).
25.
H.
Tsuji
,
Y.
Gotoh
, and
J.
Ishikawa
,
Nucl. Instrum. Methods Phys. Res. B
141
,
645
(
1998
).
26.
H.
Muller
,
W.
Ensinger
,
G.
Frech
, and
G. K.
Wolf
,
Nucl. Instrum. Methods Phys. Res. B
89
,
402
(
1994
).
27.
S.
Kawashita
,
T.
Yao
,
F.
Miyaji
,
T.
Kokubo
,
G. H.
Takaoka
, and
I.
Yamada
,
Bioceramics
(
Butterworth-Heinemann
,
London
,
1994
), Vol.
7
, p.
35
.
28.
J.
Ishikawa
,
H.
Tsuji
, and
Y.
Gotoh
,
Proceedings of the 11th International Conference on Ion Implantation Technology 1996
(
IEEE
,
New York
,
1997
), p.
249
.
29.
K.
Yano
,
T.
Ishii
,
T.
Hashimoto
,
T.
Kobayashi
,
F.
Murai
, and
K.
Seki
,
IEEE Trans. Electron Devices
41
,
1628
(
1994
).
30.
K. H.
Heining
,
T.
Mueller
,
B.
Schmidt
,
M.
Strobel
, and
W.
Moeller
,
Appl. Phys. A: Mater. Sci. Process.
77
,
17
(
2003
).
31.
P.
Sommani
,
H.
Tsuji
,
H.
Sato
,
T.
Kitamura
,
M.
Tattori
,
Y.
Gotoh
, and
J.
Ishikawa
,
Trans. Mater. Res. Soc. Jpn.
31
,
673
(
2006
).
You do not currently have access to this content.