We have developed an atomic force microscopy (AFM) technique that can perform simultaneous normal and shear stiffness measurements of nanoconfined liquids with angstrom-range amplitudes. The AFM technique is based on a fiber-interferometric, small-amplitude, off-resonance AFM. This AFM is capable of providing linear quasistatic measurements of the local mechanical properties of confined liquid layers while only minimally disturbing the layers themselves. A detailed analysis of the measurement geometry reveals that shear stiffness measurements are extremely challenging, as even small deviations from perfect orthogonality can lead to data that is very difficult to interpret. We will show ways out of this dilemma and present results that show simultaneous measurement of the shear and normal stiffness of confined liquid layers.

1.
B.
Bushan
,
J. N.
Israelachvili
, and
U.
Landman
,
Nature (London)
374
,
607
(
1995
).
2.
J. N.
Israelachvili
and
P. M.
McGuiggan
,
Science
241
,
795
(
1988
).
4.
S. J.
O’Shea
,
M. E.
Welland
, and
J. B.
Pethica
,
Chem. Phys. Lett.
223
,
336
(
1994
).
5.
M.
Heuberger
,
M.
Zach
, and
N. D.
Spencer
,
Science
292
,
905
(
2001
).
6.
A.
Mukhopadyay
,
J.
Zhao
,
S. C.
Bae
, and
S.
Granick
,
Phys. Rev. Lett.
89
,
136103
(
2002
).
7.
S.
Patil
,
G.
Matei
,
C. A.
Grabowski
,
P. M.
Hoffmann
, and
A.
Mukhopadhyay
,
Langmuir
23
,
4988
(
2007
).
8.
J.
Gao
,
W. D.
Luedtke
, and
U.
Landman
,
Phys. Rev. Lett.
79
,
705
(
1997
).
9.
E.
Kumacheva
and
J.
Klein
,
Science
269
,
5225
(
1995
);
J.
Klein
and
E.
Kumacheva
,
J. Chem. Phys.
108
,
6996
(
1998
).
10.
A. L.
Demirel
and
S.
Granick
,
Phys. Rev. Lett.
77
,
2261
(
1996
);
[PubMed]
A. L.
Demirel
and
S.
Granick
,
J. Chem. Phys.
115
,
1498
(
2001
).
11.
S.
Patil
,
G.
Matei
,
A.
Oral
, and
P. M.
Hoffmann
,
Langmuir
22
,
6485
(
2006
).
12.
A.
Oral
,
R. A.
Grimble
,
H. Ö.
Ozer
, and
J. B.
Pethica
,
Rev. Sci. Instrum.
74
,
3656
(
2003
).
13.
S.
Patil
,
G.
Matei
,
H.
Dong
,
P. M.
Hoffmann
,
M.
Karaköse
, and
A.
Oral
,
Rev. Sci. Instrum.
76
,
103705
(
2005
).
14.
P. M.
Hoffmann
,
Appl. Surf. Sci.
210
,
140
(
2003
).
15.
P. M.
Hoffmann
,
Small-Amplitude Atomic Force Microscopy in Dekker Encyclopedia of Naotechnology
(
Dekker
,
New York
,
2004
), p.
3641
.
16.
D.
Rugar
,
H. J.
Mamin
, and
P.
Guethner
,
Appl. Phys. Lett.
55
,
2588
(
1989
).
17.
R. J.
Clarke
,
O. E.
Jensen
,
J.
Billingham
,
A. P.
Pearson
, and
P. M.
Williams
,
Phys. Rev. Lett.
96
,
050801
(
2006
).
18.
T.-D.
Li
,
J.
Gao
,
R.
Szoszkiewicz
,
U.
Landman
, and
E.
Riedo
,
Phys. Rev. B
75
,
115415
(
2007
).
19.
N.
Burnham
,
X.
Chen
,
C. S.
Hodges
,
G.
Matei
,
E. J.
Tjoreson
,
C. J.
Roberts
,
M. C.
Davies
, and
J. B.
Tendler
,
Nanotechnology
14
,
1
(
2003
).
20.
G.
Matei
,
E. J.
Thoreson
,
J. R.
Pratt
,
D. B.
Newell
, and
N. A.
Burnham
,
Rev. Sci. Instrum.
77
,
083703
(
2006
).
21.
O.
Piétrement
,
J. L.
Beaudoin
, and
M.
Troyon
,
Tribol. Lett.
7
,
213
(
1999
).
22.
S. P.
Timoshenko
and
J. N.
Goodier
,
Theory of Elasticity
, 3rd ed. (
McGraw-Hill
,
New York
,
1970
), Chap. 10.
23.
V. D.
daSilva
,
Mechanics and Strength of Materials
(
Springer
,
Berlin
,
2006
), Chaps. 9 and 10.
24.
Cantilevers from MicroMasch, 7086 SW Beveland Road, Portland, OR.
25.
S. P.
Jarvis
,
H.
Tokumoto
,
H.
Yamada
,
K.
Kobayashi
, and
A.
Toda
,
Appl. Phys. Lett.
75
,
3883
(
1999
).
26.
Y.
Song
and
B.
Bhushan
,
J. Appl. Phys.
99
,
094911
(
2006
).
27.
S.
Jeffery
,
P. M.
Hoffmann
,
J. B.
Pethica
,
C.
Ramanujan
,
H. Ö.
Ozer
, and
A.
Oral
,
Phys. Rev. B
70
,
054114
(
2004
).
28.
Gelest, Inc., 11 Steel Road East, Morrisville, PA.
29.
C. J.
Yu
,
A. J.
Richter
,
A.
Dutta
,
M. K.
Durbin
, and
P.
Dutta
,
Phys. Rev. Lett.
82
,
2326
(
1999
).
30.
C. J.
Yu
,
G.
Evmenko
,
J.
Kmetko
, and
P.
Dutta
,
Langmuir
19
,
9558
(
2003
).
31.
C. J.
Yu
,
G.
Evmenko
,
A. G.
Richter
,
A.
Dutta
,
J.
Kmetko
, and
P.
Dutta
,
Appl. Surf. Sci.
182
,
231
(
2001
).
32.
T.
Dobrek
,
R. W.
Stark
, and
W. M.
Heck
,
Phys. Rev. B
64
,
045401
(
2001
).
33.
R. G.
Horn
and
J. N.
Israelachvili
,
J. Chem. Phys.
75
,
1400
(
1981
).
34.
J. P.
Cleveland
,
T. E.
Schäffer
, and
P. K.
Hansma
,
Phys. Rev. B
52
,
R8692
(
1995
).
35.
A.
Dhinojwala
and
S.
Granick
,
J. Am. Chem. Soc.
119
,
241
(
1997
).
36.
W.
Han
and
S. M.
Lindsay
,
Appl. Phys. Lett.
72
,
1656
(
1998
).
37.
S. P.
Jarvis
,
T.
Uchihaschi
,
T.
Ishida
,
H.
Tokumoto
, and
Y.
Nakayama
,
J. Phys. Chem. B
104
,
6091
(
2000
).
38.
M.
Antognozzi
,
A. D. L.
Humphris
, and
J.
Miles
,
Appl. Phys. Lett.
78
,
300
(
2001
).
39.
S. J.
O’Shea
,
J. Appl. Phys.
40
,
4309
(
2001
).
40.
A. L.
Demirel
and
S.
Granick
,
J. Chem. Phys.
115
,
1498
(
2001
).
41.
T.
Kawagishi
,
A.
Kato
,
Y.
Hoshi
, and
H.
Kawakatsu
,
Ultramicroscopy
91
,
37
(
2002
).
42.
L.
Huang
and
C.
Su
,
Ultramicroscopy
100
,
277
(
2004
).
43.
M.
Reinstädtler
,
T.
Kasai
,
U.
Rabe
,
B.
Bhushan
, and
W.
Arnold
,
J. Phys. D
38
,
R269
(
2005
).
44.
T.
Kunstmann
,
A.
Schlarb
,
M.
Fendrich
,
D.
Paulkowski
,
Th.
Wagner
, and
R.
Mller
,
Appl. Phys. Lett.
88
,
153112
(
2006
).
You do not currently have access to this content.