We have studied the micro total analysis system as a blood test. A microfluidic device with a three-pronged microchannel and artificial capillary vessels was fabricated. The microchannel is to transport blood, focus blood cells, and line them up. The vessels are to observe red blood cell deformation. An excimer laser was used to form grooves and so on. Numbers of thermosetting resin film and fluororesin were piled up on a cover glass. A laser fabricated part of the channel at the each film every lamination, and then a three-dimensional structure microchannel was fabricated. The channel sizes have widths of 50150μm and depths of 45μm. Through holes used as artificial capillary vessels are made in the fluororesin having a minimum diameter of 5μm and a length of 100μm. As blood and a physiological saline are injected into the microchannel, the device stands upward facing the channel, and blood cells go into the vessels by the force of gravity and sheath flow of the saline. By gravity various groove patterns were made changing the width and length for measurement of blood focusing. Moreover, the red blood cell deformation was observed in the vessels with a microscope.

1.
P.
Sethu
,
M.
Anahtar
,
L. L.
Moldawer
,
R. G.
Tompkins
, and
M.
Toner
,
Anal. Chem.
76
,
6247
(
2004
).
2.
Y.
Horiike
,
H.
Koda
,
S. -H.
Chang
,
R.
Ogawa
,
S.
Hashioka
,
M.
Nagai
, and
H.
Ogawa
,
Proceedings of Micro Total Analysis Systems
, 2006 (
Society for Chemistry and Micro-Nano Systems
,
Tokyo
,
2006
), pp.
1558
1560
.
3.
X.
Cheng
and
D.
Irimia
,
M.
Dixon
,
K.
Sekine
,
U.
Demirci
,
L.
Zamir
,
R. G.
Tompkins
,
W.
Rodriguez
, and
M.
Toner
,
Proceedings of Micro Total Analysis Systems
, 2006 (
Society for Chemistry and Micro-Nano Systems
,
Tokyo
,
2006
), pp.
1561
1563
.
4.
C.
Robillot
,
J.
Fitzpatrick
,
S.
Grimmer
,
B.
Kettle
,
D.
Dadic
, and
K.
Drese
,
Proceedings of Micro Total Analysis Systems
, 2006 (
Society for Chemistry and Micro-Nano Systems
,
Tokyo
,
2006
), pp.
1229
1231
.
5.
S. S.
Shevkoplyas
,
T.
Yoshida
,
L. L.
Munn
, and
M. W.
Bitensky
,
Anal. Chem.
77
,
933
(
2005
).
6.
L.
Li
,
J. Q.
Boedicker
, and
R. F.
Ismagilov
,
Anal. Chem.
79
,
2756
(
2007
).
7.
A. K.
Price
,
D. J.
Fischer
,
R. S.
Martin
, and
D. M.
Spence
,
Anal. Chem.
76
,
4849
(
2004
).
8.
S. K.
Kim
,
J. H.
Kim
,
K. P.
Kim
, and
T. D.
Chung
,
Anal. Chem.
79
,
7761
(
2007
).
9.
E.
Maeda
,
M.
Kataoka
,
Y.
Shinohara
,
N.
Kaji
,
M.
Tokeshi
, and
Y.
Baba
,
Proceedings of Micro Total Analysis Systems
, 2006 (
Society for Chemistry and Micro-Nano Systems
,
Tokyo
,
2006
), pp.
813
815
.
10.
S. S.
Lee
,
Y.
Yim
,
K. H.
Ahn
, and
S. J.
Lee
,
Proceedings of Micro Total Analysis Systems
, 2006 (
Society for Chemistry and Micro-Nano Systems
,
Tokyo
,
2006
), pp.
461
463
.
11.
Y.
Sun
,
L. C.
Ng
,
S. K.
Chua
,
X. M.
Zhang
,
P.
Droge
,
T. C.
Ayi
,
P. H.
Yap
, and
A. Q.
Liu
,
Proceedings of the International Conference on Electrical Engineering
, Sapporo, Japan, 2004 (unpublished), pp.
267
271
.
12.
T.
Ichiki
,
T.
Ujiie
,
T.
Hara
,
Y.
Horiike
, and
K.
Yasuda
,
Proceedings of Micro Total Analysis Systems
, Monterey, CA, 2001 (
Kluwer Academic
,
Dordrecht
,
2001
), pp.
271
273
.
13.
D. P.
Schrum
,
C. T.
Cubertson
,
S. C.
Jacobson
, and
J. M.
Ramsey
,
Anal. Chem.
71
,
4173
(
1999
).
14.
M.
Rieseberg
,
C.
Kasper
, and
K. F.
Reardon
,
Appl. Microbiol. Biotechnol.
56
,
350
(
2001
).
15.
Y.
Yoshida
,
Proc. SPIE
5063
,
189
(
2003
).
16.
H.
Yamada
,
Y.
Yoshida
, and
N.
Terada
,
Jpn. J. Appl. Phys., Part 1
44
,
8739
(
2005
).
You do not currently have access to this content.