A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0±0.3)ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1μm for size diameter and (0.84.9)×106particles/cm3 for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as dp=0.9μm and N=5×103particles/cm3 with σ=1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the flow tube reactor is negligible and that the aerosol particles remain on-axis for the length of the flow tube.

1.
M. O.
Andreae
and
P. J.
Crutzen
,
Science
276
,
1052
(
1997
).
2.
B. J.
Finlayson-Pitts
and
J. N.
Pitts
, Jr.
,
Science
276
,
1045
(
1997
).
3.
S.
Solomon
,
D.
Qin
,
M.
Manning
,
Z.
Chen
,
M.
Marquis
,
K. B.
Averyt
,
M.
Tignor
, and
H. L.
Miller
,
Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)
(
Cambridge University Press
,
New York
,
2007
).
4.
C. A.
Pope
and
D. W.
Dockery
,
J. Air Waste Manage. Assoc.
56
,
709
(
2006
).
5.
A. R.
Ravishankara
,
Science
276
,
1058
(
1997
).
6.
B. J.
Finlayson-Pitts
and
J. N.
Pitts
, Jr.
,
Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications
(
Academic
,
London
,
2000
).
7.
C. L.
DeForest
,
J.
Qian
, and
R. E.
Miller
,
Appl. Spectrosc.
56
,
1429
(
2002
).
8.
R. S.
Disselkamp
,
M. A.
Carpenter
, and
J. P.
Cowin
,
J. Atmos. Chem.
37
,
113
(
2000
).
9.
P. K.
Hudson
,
M. A.
Young
,
P. D.
Kleiber
, and
V. H.
Grassian
,
Atmos. Environ.
42
,
5991
(
2008
).
10.
R. A.
McPheat
,
D. A.
Newnham
,
R. G.
Williams
, and
J.
Ballard
,
Appl. Opt.
40
,
6581
(
2001
).
11.
Z.
Bacsik
,
J.
Mink
, and
G.
Keresztury
,
Appl. Spectrosc. Rev.
39
,
295
(
2004
).
12.
J.
Doussin
,
R.
Dominique
, and
C.
Patrick
,
Appl. Opt.
38
,
4145
(
1999
).
13.
R. C.
Hoffman
,
A.
Laskin
, and
B. J.
Finlayson-Pitts
,
J. Aerosol Sci.
35
,
869
(
2004
).
14.
R.
Wagner
,
A.
Mangold
,
O.
Mohler
,
H.
Saathoff
,
M.
Scnaiter
, and
U.
Schuruth
,
Atmos. Chem. Phys.
3
,
1147
(
2003
).
15.
J. U.
White
,
J. Opt. Soc. Am.
66
,
411
(
1976
).
16.
D. J.
Last
,
J. J.
Najera
,
C. J.
Percival
, and
A. B.
Horn
,
Phys. Chem. Chem. Phys.
(unpublished).
17.
R. C.
Weast
,
CRC Handbook of Chemistry and Physics: A Ready Reference Book of Chemical and Physical Data
, 70th ed. (
CRC
,
Boca Raton, FL
,
1989–1990
).
18.
O. B.
Toon
,
J. B.
Pollack
, and
B. N.
Khare
,
J. Geophys. Res.
81
,
5733
(
1976
).
19.
I. N.
Tang
,
J. Geophys. Res.
101
,
19245
, DOI:10.1029/96JD03003 (
1996
).
20.
S. M.
Chernin
,
Spectrochim. Acta, Part A
52
,
1009
(
1996
).
21.
A. Y.
Zasetsky
,
M. E.
Earle
,
B.
Cosic
,
R.
Schiwon
,
I. A.
Grishin
,
R.
McPhail
,
R. G.
Pancescu
,
J.
Najera
,
A. F.
Khalizov
,
K. B.
Cook
, and
J. J.
Sloan
,
J. Quant. Spectrosc. Radiat. Transf.
107
,
294
(
2007
).
22.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
New York
,
1983
).
23.
J. C.
Lagarias
,
J. E.
Reeds
,
M. H.
Wrights
, and
P. E.
Wright
,
SIAM J. Optim.
9
,
112
(
1998
).
24.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C++: the Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2002
).
25.
D. D.
Weis
and
G. E.
Ewing
,
J. Geophys. Res.
101
,
18709
, DOI:10.1029/96JD01543 (
1996
).
26.
D. D.
Weis
and
G. E.
Ewing
,
J. Geophys. Res.
104
,
21275
, DOI:10.1029/1999JD900286 (
1999
).
27.
D. J.
Cziczo
,
J. B.
Nowak
,
J. H.
Hu
, and
J. P. D.
Abbatt
,
J. Geophys. Res.
102
,
18843
, DOI:10.1029/97JD01361 (
1997
).
28.
C. J.
Howard
,
J. Phys. Chem.
83
,
3
(
1979
).
You do not currently have access to this content.