Time-correlated single photon counting continues to gain importance in a wide range of applications. Most prominently, it is used for time-resolved fluorescence measurements with sensitivity down to the single molecule level. While the primary goal of the method used to be the determination of fluorescence lifetimes upon optical excitation by short light pulses, recent modifications and refinements of instrumentation and methodology allow for the recovery of much more information from the detected photons, and enable entirely new applications. This is achieved most successfully by continuously recording individually detected photons with their arrival time and detection channel information (time tagging), thus avoiding premature data reduction and concomitant loss of information. An important property of the instrumentation used is the number of detection channels and the way they interrelate. Here we present a new instrument architecture that allows scalability in terms of the number of input channels while all channels are synchronized to picoseconds of relative timing and yet operate independent of each other. This is achieved by means of a modular design with independent crystal-locked time digitizers and a central processing unit for sorting and processing of the timing data. The modules communicate through high speed serial links supporting the full throughput rate of the time digitizers. Event processing is implemented in programmable logic, permitting classical histogramming, as well as time tagging of individual photons and their temporally ordered streaming to the host computer. Based on the time-ordered event data, any algorithms and methods for the analysis of fluorescence dynamics can be implemented not only in postprocessing but also in real time. Results from recently emerging single molecule applications are presented to demonstrate the capabilities of the instrument.

1.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
(
Springer
,
New York
,
1999
).
3.
R.
Rigler
and
E. S.
Elson
,
Fluorescence Correlation Spectroscopy Theory and Applications
(
Springer
,
Berlin
,
2001
).
4.
K.
Schätzel
,
Inst. Phys. Conf. Ser.
77
,
175
184
(
1985
).
5.
M.
Ehrenberg
and
R.
Rigler
,
Chem. Phys.
4
,
390
(
1974
).
6.
P.
Kask
,
P.
Piksarv
, and
U.
Mets
,
Eur. Biophys. J.
12
,
163
(
1985
).
7.
T.
Basche
,
W. E.
Moerner
,
M.
Orrit
, and
H.
Talon
,
Phys. Rev. Lett.
69
,
1516
(
1992
).
8.
P.
Tinnefeld
,
K. D.
Weston
,
T.
Vosch
,
M.
Cotlet
,
T.
Weil
,
J.
Hofkens
,
K.
Mullen
,
F. C.
De Schryver
, and
M.
Sauer
,
J. Am. Chem. Soc.
124
,
14310
(
2002
).
9.
J.
Sykora
,
K.
Kaiser
,
I.
Gregor
,
W.
Bonigk
,
G.
Schmalzing
, and
J.
Enderlein
,
Anal. Chem.
79
,
4040
(
2007
).
10.
S.
Fore
,
T. A.
Laurence
,
C. W.
Hollars
, and
T.
Huser
,
IEEE J. Sel. Top. Quantum Electron.
13
,
996
(
2007
).
11.
P.
Kask
,
P.
Piksarv
,
U.
Mets
,
M.
Pooga
, and
E.
Lippmaa
,
Eur. Biophys. J.
14
,
257
(
1987
).
12.
A. J.
Berglund
,
A. C.
Doherty
, and
H.
Mabuchi
,
Phys. Rev. Lett.
89
,
068101
(
2002
).
13.
D.
Nettels
,
I. V.
Gopich
,
A.
Hoffmann
, and
B.
Schuler
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
2655
(
2007
).
14.
C.
Eggeling
,
J. R.
Fries
,
L.
Brand
,
R.
Gunther
, and
C. A. M.
Seidel
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
1556
(
1998
).
15.
M.
Wahl
,
R.
Erdmann
,
K.
Lauritsen
, and
H. J.
Rahn
,
Proc. SPIE
3259
,
173
(
1998
).
16.
J. B.
Edel
and
A. J.
Demello
,
Appl. Phys. Lett.
90
,
053904
(
2007
).
17.
H. Z.
Lin
,
S. R.
Tabaei
,
D.
Thomsson
,
O.
Mirzov
,
P. O.
Larsson
, and
I. G.
Scheblykin
,
J. Am. Chem. Soc.
130
,
7042
(
2008
).
18.
C.
Eggeling
,
S.
Berger
,
L.
Brand
,
J. R.
Fries
,
J.
Schaffer
,
A.
Volkmer
, and
C. A. M.
Seidel
,
J. Biotechnol.
86
,
163
(
2001
).
19.
H. P.
Lu
,
Methods in Molecular Biology
(
Humana Press
,
Totowa, NJ
,
2005
), Vol.
305
, p.
385
.
20.
M.
Wahl
,
I.
Gregor
,
M.
Patting
, and
J.
Enderlein
,
Opt. Express
11
,
3583
(
2003
).
21.
D.
Nettels
and
B.
Schuler
,
IEEE J. Sel. Top. Quantum Electron.
13
,
990
(
2007
).
22.
D. C.
Lamb
,
A.
Schenk
,
C.
Rocker
,
C.
Scalfi-Happ
, and
G. U.
Nienhaus
,
Biophys. J.
79
,
1129
(
2000
).
23.
M.
Böhmer
,
M.
Wahl
,
H. J.
Rahn
,
R.
Erdmann
, and
J.
Enderlein
,
Chem. Phys. Lett.
353
,
439
(
2002
).
24.
F.
Koberling
,
M.
Wahl
,
M.
Patting
,
H. J.
Rahn
,
P.
Kapusta
, and
R.
Erdmann
,
Proc. SPIE
5143
,
181
(
2003
).
25.
U.
Ortmann
,
T.
Dertinger
,
M.
Wahl
,
H. J.
Rahn
,
M.
Patting
, and
R.
Erdmann
,
Proc. SPIE
5325
,
179
(
2004
).
26.
S.
Felekyan
,
R.
Kuhnemuth
,
V.
Kudryavtsev
,
C.
Sandhagen
,
W.
Becker
, and
C. A. M.
Seidel
,
Rev. Sci. Instrum.
76
,
083104
(
2005
).
27.
M.
Wahl
,
H. J.
Rahn
,
I.
Gregor
,
R.
Erdmann
, and
J.
Enderlein
,
Rev. Sci. Instrum.
78
,
033106
(
2007
).
28.
M.
Ghioni
,
A.
Gulinatti
,
I.
Rech
,
F.
Zappa
, and
S.
Cova
,
IEEE J. Sel. Top. Quantum Electron.
13
,
852
(
2007
).
29.
I.
Rech
,
D.
Resnati
,
S.
Marangonia
,
M.
Ghioni
, and
S.
Cova
,
Proc. SPIE
6771
,
77113
(
2007
).
30.
I.
Rech
,
S.
Marangonia
,
D.
Resnati
,
M.
Ghioni
, and
S.
Cova
,
J. Mod. Opt.
99999
(
1
),
1
8
(
2008
), http://www.informaworld.com/10.1080/09500340802318309. Accessed Dec. 18, 2008.
31.
D. J. S.
Birch
,
D.
McLoskey
,
A.
Sanderson
,
K.
Suhling
, and
A. S.
Holmes
,
J. Fluoresc.
4
,
91
(
1994
).
32.
K. D.
Weston
,
M.
Dyck
,
P.
Tinnefeld
,
C.
Muller
,
D. P.
Herten
, and
M.
Sauer
,
Anal. Chem.
74
,
5342
(
2002
).
33.
D. P.
Herten
,
A.
Biebricher
,
M.
Heilemann
,
T.
Heinlein
,
C.
Müller
,
P.
Schlüter
,
P.
Tinnefeld
,
K. D.
Weston
,
M.
Sauer
, and
J.
Wolfrum
,
Recent Res. Dev. Appl. Phys.
7
,
345
(
2004
).
34.
H.
Ta
,
A.
Mogk
,
B.
Bukau
, and
D. -P.
Herten
,
14th International Workshop on Single Molecule Spectroscopy and Ultrasensitive Analysis
, Berlin,
2008
(unpublished).
35.
W.
Becker
,
A.
Bergmann
,
C.
Biskup
,
L.
Kelbauskas
,
T.
Zimmer
,
N.
Klöcker
, and
K.
Benndorf
,
Proc. SPIE
4963
,
175
(
2003
).
36.
D.
Knoll
,
K. E.
Ehwald
,
B.
Heinemann
,
A.
Fox
,
K.
Blum
,
H.
Rucker
,
F.
Furnhammer
,
B.
Senapati
,
R.
Barth
, and
U.
Haak
,
Tech. Dig. - Int. Electron Devices Meet.
2002
,
783
.
37.
F.
Hillger
,
D.
Hänni
,
D.
Nettels
,
S.
Geister
,
M.
Grandin
,
M.
Textor
, and
B.
Schuler
,
Angew. Chem., Int. Ed.
47
,
6184
(
2008
).
38.
F. U.
Hartl
and
M.
Hayer-Hartl
,
Science
295
,
1852
(
2002
).
39.
R. H.
Brown
and
R. Q.
Twiss
,
Nature (London)
177
,
27
(
1956
).
40.
F.
Hillger
,
D.
Nettels
,
S.
Dorsch
, and
B.
Schuler
,
J. Fluoresc.
17
,
759
(
2007
).
41.
P.
Kask
,
P.
Piksarv
,
M.
Pooga
,
U.
Mets
, and
E.
Lippmaa
,
Biophys. J.
55
,
213
(
1989
).
42.
B.
Schuler
,
E. A.
Lipman
,
P. J.
Steinbach
,
M.
Kumke
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
2754
(
2005
).
43.
A. A.
Deniz
,
T. A.
Laurence
,
M.
Dahan
,
D. S.
Chemla
,
P. G.
Schultz
, and
S.
Weiss
,
Annu. Rev. Phys. Chem.
52
,
233
(
2001
).
44.
For getting more accurate estimates for the transfer efficiency, it would be necessary to correct for background photons, for different quantum yields of Alexa 488 and Alexa 594, and for the different detection efficiencies and crosstalk between the detection channels;
B.
Schuler
,
Methods Mol. Biol.
350
,
115
(
2007
) (for the mere discrimination between subpopulations, these corrections can be ignored).
45.
R.
Best
,
K.
Merchant
,
I. V.
Gopich
,
B.
Schuler
,
A.
Bax
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18964
(
2007
).
47.
G.
Haran
,
J. Phys.: Condens. Matter
15
,
R1291
(
2003
).
48.
X.
Michalet
,
S.
Weiss
, and
M.
Jäger
,
Chem. Rev. (Washington, D.C.)
106
,
1785
(
2006
).
49.
B.
Schuler
and
W. A.
Eaton
,
Curr. Opin. Struct. Biol.
18
,
16
(
2008
).
You do not currently have access to this content.