Disruptions are major instabilities and remain one of the main problems in tokomaks. Using Joint European Torus database, a disruption predictor is developed by computational methods including supervised learning techniques. The main objectives of the work are to develop accurate automatic classifiers, to test their performances, and to determine how much in advance of the disruption they can operate with acceptable reliability.

1.
B.
Cannas
,
F.
Cau
,
A.
Fanni
,
P.
Sonato
, and
M. K.
Zedda
,
Nucl. Fusion
46
,
699
(
2006
).
2.
A.
Murari
,
G.
Vagliasindi
,
P.
Arena
,
L.
Fortuna
,
O.
Barana
, and
M.
Johnson
,
Nucl. Fusion
48
,
035010
(
2008
).
3.
B.
Cannas
,
A.
Fanni
,
P.
Sonato
, and
M. K.
Zedda
,
Fusion Eng. Des.
82
,
1124
(
2007
).
4.
B.
Cannas
,
A.
Fanni
,
G.
Pautasso
,
G.
Sias
,
P.
Sonato
, and
M. K.
Zedda
,
33rd EPS
Rome
,
2006
, Vol.
301
, p.
2
143
.
5.
C.
Cortes
and
V.
Vapnik
,
Mach. Learn.
20
,
273
(
1995
).
6.
The Spider, A machine learning in MATLAB, Max-Planck Institute for Biological Cybernetics, Tuebingen, Germany, www.kyb.tuebingen.mpg.de/bs/people/spider/
You do not currently have access to this content.