In tokamak experiments, equilibrium reconstruction codes are used to calculate the location of the last closed flux surface, to map diagnostic information, and to derive important properties like current density and safety factor. At JET, the equilibrium code EFIT is automatically executed after each discharge. For speed and robustness, intershot EFIT is based on magnetic probe measurements only. As a consequence, the intershot profiles of the safety factor can be wrong for a variety of plasma scenarios. Internal diagnostic information, the pitch angle as measured with the motional stark effect, Faraday rotation angles, as well as pressure profile information can increase the accuracy of the EFIT equilibrium. In this paper, the accuracy of the internal diagnostics at JET and their impact on the EFIT results are discussed in detail. The influence of control parameters like the form of the test functions for ff and p on the equilibrium is investigated. The qmin from this analysis agrees with information from magnetohydrodynamics analysis (e.g., Alfvén cascades and sawtooth analysis) to within 10%–15%.

1.
L. L.
Lao
,
H.
St John
,
R. D.
Stambaugh
, and
W.
Pfeiffer
,
Nucl. Fusion
25
,
1421
(
1985
).
2.
D. P.
O’Brien
,
L. L.
Lao
,
E. R.
Solano
,
M.
Garribba
,
T. S.
Taylor
,
J. G.
Cordey
, and
J. J.
Ellis
,
Nucl. Fusion
32
,
1351
(
1992
).
3.
W.
Zwingmann
,
Proceedings of the Seventh European Fusion Theory Conference
,
Jülich
,
1997
(unpublished).
4.
B. C.
Stratton
,
D.
Long
,
R.
Palladino
, and
N. C.
Hawkes
,
Rev. Sci. Instrum.
70
,
898
(
1999
).
5.
C. R.
Negus
,
C.
Giroud
,
A. G.
Meigs
,
K.-D.
Zastrow
, and
D. L.
Hills
,
Rev. Sci. Instrum.
77
,
10F102
(
2006
);
C.
Giroud
 et al,
Rev. Sci. Instrum.
79
,
10F525
(
2008
).
[PubMed]
6.
N. C.
Hawkes
and
M.
Brix
,
Rev. Sci. Instrum.
77
,
10E509
(
2006
).
7.
G.
Braithwaite
,
N.
Gottardi
,
G.
Magyar
,
J.
O'Rourke
,
J.
Ryan
, and
D.
Veron
,
Rev. Sci. Instrum.
60
,
2825
(
1989
).
8.
C.
Gowers
,
J. Plasma Fusion Res.
76
,
874
(
2000
).
9.
J. P.
Christiansen
,
J. Comput. Phys.
73
,
85
(
1987
).
10.
C. C.
Challis
,
J. G.
Cordey
,
H.
Hamnen
,
P. M.
Stubberfield
,
J. P.
Christiansen
,
E.
Lazzaro
,
D. G.
Muir
,
D.
Stork
, and
E.
Thompson
,
Nucl. Fusion
29
,
563
(
1989
).
11.
S. A.
Arshad
,
J. G.
Cordey
,
D. C.
McDonald
,
J.
Farthing
,
E.
Joffrin
,
M.
von Hellermann
,
C. M.
Roach
, and
J.
Svensson
,
Fusion Sci. Technol.
53
,
667
(
2008
).
12.
L.-G.
Eriksson
,
T.
Hellsten
, and
U.
Willen
,
Nucl. Fusion
33
,
1037
(
1993
).
13.
W.
Zwingmann
,
L.-G.
Eriksson
, and
P.
Stuberfield
,
Plasma Phys. Controlled Fusion
43
,
1441
(
2001
).
14.
R. J.
Goldston
,
D. C.
McCune
,
H. H.
Towner
,
S. L.
Davis
,
R. J.
Hawryluk
, and
G. L.
Schmidt
,
J. Comput. Phys.
43
,
61
(
1981
).
15.
W. A.
Cooper
and
A. J.
Wootton
,
Plasma Phys.
24
,
1183
(
1982
).
16.
H.
Solwitsch
and
H. R.
Koslowski
,
Plasma Phys. Controlled Fusion
37
,
667
(
1995
).
17.
N. C.
Hawkes
,
B. C.
Stratton
,
T.
Tala
,
C. D.
Challis
,
G.
Conway
,
R.
DeAngelis
,
C
Giroud
,
J.
Hobirk
,
E.
Joffrin
,
P.
Lomas
 et al,
Phys. Rev. Lett.
87
,
115001
(
2001
).
18.
N. C.
Hawkes
,
Y.
Andrew
,
C. D.
Challis
,
R.
DeAngelis
,
V.
Drozdov
,
J.
Hobirk
,
E.
Joffrin
,
P.
Lotte
,
D.
Mazon
,
E.
Rachlew
, et al,
Plasma Phys. Controlled Fusion
44
,
1105
(
2002
).
19.
S. E.
Sharapov
,
B.
Alper
,
H. L.
Berk
,
D. N.
Borba
,
B. N.
Breiaman
,
C. D.
Challis
,
A.
Fasoli
,
N. C.
Hawkes
,
T. C.
Hender
,
J.
Mailloux
 et al,
Phys. Plasmas
9
,
2027
(
2002
).
You do not currently have access to this content.