We constructed a dilution-refrigerator (DR)-based ultralow temperature scanning tunneling microscope (ULT-STM) which works at temperatures down to 30mK, in magnetic fields up to 6T and in ultrahigh vacuum (UHV). Besides these extreme operation conditions, this STM has several unique features not available in other DR-based ULT-STMs. One can load STM tips as well as samples with clean surfaces prepared in an UHV environment to a STM head keeping low temperature and UHV conditions. After then, the system can be cooled back to near the base temperature within 3h. Due to these capabilities, it has a variety of applications not only for cleavable materials but also for almost all conducting materials. The present ULT-STM has also an exceptionally high stability in the presence of magnetic field and even during field sweep. We describe details of its design, performance, and applications for low temperature physics.

1.
S. H.
Pan
,
E. W.
Hudson
, and
J. C.
Davis
,
Rev. Sci. Instrum.
70
,
1459
(
1999
).
2.
M.
Kugler
,
Ch.
Renner
,
Ø.
Fischer
,
V.
Mikheev
, and
G.
Batey
,
Rev. Sci. Instrum.
71
,
1475
(
2000
).
3.
J.
Wiebe
,
A.
Wachowiak
,
F.
Meier
,
D.
Haude
,
T.
Foster
,
M.
Morgenstern
, and
R.
Wiesendanger
,
Rev. Sci. Instrum.
75
,
4871
(
2004
).
4.
H. F.
Hess
,
R. B.
Robinson
, and
J. V.
Waszczak
,
Physica B
169
,
422
(
1991
).
5.
H.
Fukuyama
,
H.
Tan
,
T.
Handa
,
T.
Kumakura
, and
M.
Morishita
,
Czech. J. Phys.
46
,
2847
(
1996
).
6.
M. D.
Upward
,
J. W.
Janssen
,
L.
Gurevich
,
A. F.
Morpurgo
, and
L. P.
Kouwenhoven
,
Appl. Phys. A: Mater. Sci. Process.
72
,
S253
(
2001
).
7.
N.
Moussy
,
H.
Courtois
, and
B.
Pannetier
,
Rev. Sci. Instrum.
72
,
128
(
2001
).
8.
H.
Suderow
 et al.,
Physica C
369
,
106
(
2002
).
9.
T.
Hanaguri
,
C.
Lupien
,
Y.
Kohsaka
,
D.-H.
Lee
,
M.
Azuma
,
M.
Takano
,
H.
Takagi
, and
J. C.
Davis
,
Nature (London)
430
,
1001
(
2004
).
10.
The early design of our ULT-STM was described in
T.
Matsui
,
H.
Kambara
, and
H.
Fukuyama
,
J. Low Temp. Phys.
121
,
803
(
2000
).
11.
A preliminary report of the construction of ULT-STM is given in
T.
Matsui
,
H.
Kambara
,
I.
Ueda
,
T.
Shishido
,
Y.
Miyatake
, and
H.
Fukuyama
,
Physica B
329–333
,
1653
(
2003
).
12.
Y.
Niimi
,
K.
Kanisawa
,
H.
Kojima
,
H.
Kambara
,
Y.
Hirayama
,
S.
Tarucha
, and
H.
Fukuyama
,
J. Phys.: Conf. Ser.
61
,
874
(
2007
).
13.
T.
Matsui
,
H.
Kambara
,
Y.
Niimi
,
K.
Tagami
,
M.
Tsukada
, and
H.
Fukuyama
,
Phys. Rev. Lett.
94
,
226403
(
2005
).
14.
Y.
Niimi
,
T.
Matsui
,
H.
Kambara
, and
H.
Fukuyama
,
Physica E (Amsterdam)
34
,
100
(
2006
).
15.
Y.
Niimi
,
H.
Kambara
,
T.
Matsui
,
D.
Yoshioka
, and
H.
Fukuyama
,
Phys. Rev. Lett.
97
,
236804
(
2006
).
16.
H.
Kambara
,
Y.
Niimi
,
K.
Takizawa
,
H.
Yaguchi
,
Y.
Maeno
, and
H.
Fukuyama
,
AIP Conf. Proc.
850
,
539
(
2006
).
17.

Model Kelvinox-100, Oxford Instruments. The cooling power is 100μW at 100mK, and the base temperature without heat load is 9.4mK.

18.
I-V converter model 1211, DL Instruments.
19.
SCALA PRO 4.1 system, OMICRON NanoTechnology GmbH.
20.

The STM head was designed and assembled in collaboration with Unisoku Co., Ltd.

21.
H.
Fukuyama
,
Solid State Phys.
30
,
938
(
1995
) in Japanese.
22.
Manufactured by Unisoku Co., Ltd.
23.
H. F.
Hess
,
R. B.
Robinson
,
R. C.
Dynes
,
J. M.
Valles
, Jr.
, and
J. V.
Waszczak
,
Phys. Rev. Lett.
62
,
214
(
1989
).
24.
M.
Tinkham
,
Introduction to Superconductivity
(
McGraw-Hill
,
New York
,
1996
).
25.
E. L.
Wolf
,
Principles of Electron Tunneling Spectroscopy
(
Oxford University Press
,
Oxford
,
1985
).
26.
J. G.
Rodrigo
,
H.
Suderow
, and
S.
Vieira
,
Eur. Phys. J. B
40
,
483
(
2004
).
27.
S. H.
Pan
,
E. W.
Hudson
, and
J. C.
Davis
,
Appl. Phys. Lett.
73
,
2992
(
1998
).
28.
K.
Kanisawa
,
M. J.
Butcher
,
Y.
Tokura
,
H.
Yamaguchi
, and
Y.
Hirayama
,
Phys. Rev. Lett.
87
,
196804
(
2001
).
You do not currently have access to this content.