Combined micro-Raman/UV-visible (vis)/fluorescence spectroscopy system, which can evaluate an integrated array of more than 10 000 microsamples with a minimuma size of 5μm within a few hours, has been developed for the first time. The array of microsamples is positioned on a computer-controlled XY translation microstage with a spatial resolution of 1μm so that the spectra can be mapped with micron precision. Micro-Raman spectrometers have a high spectral resolution of about 2cm1 over the wave number range of 1503900cm1, while UV-vis and fluorescence spectrometers have high spectral resolutions of 0.4 and 0.1nm over the wavelength range of 190900nm, respectively. In particular, the signal-to-noise ratio of the micro-Raman spectroscopy has been improved by using a holographic Raman grating and a liquid-nitrogen-cooled charge-coupled device detector. The performance of the combined spectroscopy system has been demonstrated by the high-throughput screening of a combinatorial ferroelectric (i.e., BaTixZr1xO3) library. This system makes possible the structure analysis of various materials including ferroelectrics, catalysts, phosphors, polymers, alloys, and so on for the development of novel materials and the ultrasensitive detection of trace amounts of pharmaceuticals and diagnostic agents.

1.
S. I.
Woo
,
K. W.
Kim
,
H. Y.
Cho
,
K. S.
Oh
,
M. K.
Jeon
,
N. H.
Tarte
,
T. S.
Kim
, and
A.
Mahmood
,
QSAR Comb. Sci.
24
,
138
(
2005
).
2.
P.
Atienzar
,
A.
Corma
,
H.
García
, and
J. M.
Serra
,
Chem.-Eur. J.
10
,
6043
(
2004
).
3.
R. A.
Potyrailo
and
R. J.
Wroczynski
,
Rev. Sci. Instrum.
76
,
062222
(
2005
).
5.
H.
Jiu
,
J.
Ding
,
J.
Bao
,
Q.
Zhang
, and
C.
Gao
,
Spectrochim. Acta, Part A
61
,
3150
(
2005
).
6.
S. M.
Senkan
,
Nature (London)
394
,
350
(
1998
).
7.
K. S.
Oh
,
Y. K.
Park
, and
S. I.
Woo
,
Rev. Sci. Instrum.
76
,
062219
(
2005
).
8.
G. S.
Sittampalam
,
S. D.
Kahl
, and
W. P.
Janzen
,
Curr. Opin. Chem. Biol.
1
,
384
(
1997
).
9.
J.
Tu
,
Z.
Yu
, and
Y.-H.
Chu
,
Clin. Chem.
44
,
232
(
1998
).
10.
H.-U.
Gremlich
,
Biotech. Bioeng. Comb. Chem.
61
,
179
(
1998/1999
).
11.
G.
Gauglitz
,
Curr. Opin. Chem. Biol.
4
,
351
(
2000
).
12.
P.
Kubelka
and
F.
Munk
,
Physik
12
,
593
(
1931
).
13.
D. J.
Swinehart
,
J. Chem. Educ.
39
,
333
(
1972
).
14.
F. M.
Pontes
,
M. T.
Escote
,
C. C.
Escudeiro
,
E. R.
Leite
,
E.
Longo
,
A. J.
Chiquito
,
P. S.
Pizani
, and
J. A.
Varela
,
J. Appl. Phys.
96
,
4386
(
2004
).
15.
V. V.
Bryukhanov
,
J. Appl. Spectrosc.
70
,
450
(
2003
).
16.
H. S.
Kang
,
Y. C.
Kang
,
K. Y.
Jung
, and
S. B.
Park
,
Mater. Sci. Eng., B
121
,
81
(
2005
).
You do not currently have access to this content.