A Hopkinson pressure bar has been modified to measure the dynamic fracture properties of materials at loading rates greater than 106MPams. Some fundamental dynamic effects associated with the incident stress pulse, such as stress wave propagation characteristics along the Hopkinson bar and within the cracked specimen, the specimen’s dynamic response excited by the stress pulse, and the specimen contact situations with the impactor and supports, need to be understood. To better comprehend these fundamental issues, an experimental investigation of these dynamic effects with the emphasis on “loss of contact” was first performed on a two-bar/three-point dynamic bend fracture test setup using a voltage measurement circuit across the specimen/loading-pin interfaces and high-speed photographs. It was demonstrated here that the three-point bend specimen employed with the current two-bar/three-point bend test setup remains in contact with the impactor and supports throughout the first loading duration and that “loss of contact” does not occur. A further improvement using a pulse-shaping technique was employed for achieving a tailored incident pulse. The effect of pulse shaper on the rise time and duration of the incident pulse as well as the dynamic stress equilibrium in the cracked three-point bend has been investigated, for the first time here, with profound implications for significantly improved dynamic three-point bend fracture testing.

1.
C.
Ruiz
and
R. A. W.
Mines
,
Int. J. Fract.
29
,
101
(
1985
).
2.
V. M. F.
Évora
and
A.
Shukla
,
Mater. Sci. Eng., A
361
,
358
(
2003
).
3.
C.
Bacon
,
J.
Farm
, and
J. L.
Lataillade
,
Exp. Mech.
,
34
,
217
(
1994
).
4.
C. H.
Popelar
,
C. E.
Anderson
, Jr.
, and
A.
Nagy
,
Exp. Mech.
40
,
401
(
2000
).
5.
W. G.
Guo
,
Y. L.
Li
, and
Y. Y.
Liu
,
Theor. Appl. Fract. Mech.
26
,
29
(
1997
).
6.
L.
Rubio
,
J.
Fernández-Sáez
, and
C.
Navarro
,
Exp. Mech.
42
,
379
(
2003
).
7.
T.
Yokoyama
,
J. Pressure Vessel Technol.
115
,
389
(
1993
).
8.
G.
Weisbrod
and
D.
Rittel
,
Int. J. Fract.
104
,
89
(
2000
).
9.
F.
Zhou
,
J.-F.
Molinari
, and
Y.
Li
,
Eng. Fract. Mech.
71
,
1357
(
2004
).
10.
D.
Rittel
,
A.
Pineal
,
J.
Clisson
, and
L.
Rota
,
Exp. Mech.
42
,
247
(
2002
).
11.
S.
Sahraoui
and
J. L.
Latailiade
,
Eng. Fract. Mech.
60
,
437
(
1998
).
12.
D.
Rittel
and
A. J.
Rosakis
,
Eng. Fract. Mech.
72
,
1905
1919
(
205
).
13.
J. R.
Klepaczko
,
ASME J. Eng. Mater. Technol.
104
,
29
(
1982
).
14.
M. N.
Bassim
,
M. R.
Bayoumi
,
T. R.
Hsu
, and
J. R.
Matthews
,
J. Test. Eval.
14
,
229
(
1986
).
15.
H.
Maigre
and
D.
Rittel
,
Int. J. Fract.
73
,
67
(
1995
).
16.
F.
Jiang
,
A.
Rohatgi
,
K. S.
Vecchio
, and
J.
Cheney
,
Int. J. Fract.
127
,
147
(
2004
).
17.
K.
Kishimoto
,
S.
Aoki
, and
M.
Sakata
,
Eng. Fract. Mech.
13
,
501
(
1980
).
18.
W.
Böhme
and
J. F.
Kalthoff
,
Int. J. Fract.
20
,
R139
(
1982
).
19.
J. F.
Kalthoff
,
Int. J. Fract.
27
,
277
(
1985
).
20.
P. R.
Marur
,
Int. J. Fract.
81
,
27
(
1996
).
21.
P. R.
Marur
,
Eng. Fract. Mech.
61
,
369
(
1998
).
22.
C. E.
Franz
,
P. S.
Follanbee
, and
W. J.
Wright
, In
The Eight International Conference on High Energy Rate Fabrication
, edited by
I.
Beaman
and
J. W.
Schroeder
(
ASME
,
San Antonio, TX
,
1984
).
23.
D. J.
Frew
,
M. J.
Forrestal
, and
W.
Chen
,
Exp. Mech.
42
,
93
(
2002
).
24.
D. J.
Frew
,
M. J.
Forrestal
, and
W.
Chen
,
Exp. Mech.
41
,
40
(
2001
).
25.
R. P.
Singh
and
V.
Parameswaran
,
Opt. Lasers Eng.
40
,
289
(
2003
).
26.
W. W.
Chen
,
Q.
Wu
,
J. H.
Kang
, and
N. A.
Winfree
,
Int. J. Solids Struct.
38
,
8989
(
2001
).
27.
M. A.
Irfan
and
V.
Prakash
,
Int. J. Solids Struct.
37
,
4477
(
2000
).
28.
T.
Lorriot
,
E.
Martin
,
J. M.
Quenisset
, and
J. P.
Rebiere
,
Int. J. Fract.
91
,
299
(
1998
).
29.
J. H.
Giovanola
, in
Fracture Mechanics: ASTM STP 905
, edited by
J. H.
Underwood
,
R.
Chait
,
C. W.
Smith
,
D. P.
Wilhem
,
W. A.
Andres
, and
J. C.
Newman
(
American Society for Testing and Materials
,
Philadelphia
,
1986
), pp.
307
328
.
You do not currently have access to this content.