We demonstrate that a near-field microwave microscope based on a transmission line resonator allows imaging in a substantially wide range of frequencies, so that the microscope properties approach those of a spatially resolved impedance analyzer. In the case of an electric probe, the broadband imaging can be used in a direct fashion to separate contributions from capacitive and resistive properties of a sample at length scales on the order of one micron. Using a microwave near-field microscope based on a transmission line resonator we imaged the local dielectric properties of a focused ion beam milled structure on a high-dielectric-constant Ba0.6Sr0.4TiO3 thin film in the frequency range from 1.3 to 17.4 GHz. The electrostatic approximation breaks down already at frequencies above 10GHz for the probe geometry used, and a full-wave analysis is necessary to obtain qualitative information from the images.

1.
B. T.
Rosner
and
D. W.
van der Weide
,
Rev. Sci. Instrum.
73
,
2505
(
2002
).
2.
S. M.
Anlage
,
V. V.
Talanov
, and
A. R.
Schwartz
, in
Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale
, edited by
S. V.
Kalinin
and
A.
Gruverman
(
Springer
,
New York
,
2007
).
3.
Y.
Lu
,
T.
Wei
,
F.
Duewer
,
Y.
Lu
,
N. -B.
Ming
,
P. G.
Schultz
, and
X. D.
Xiang
,
Science
276
,
2004
(
1997
).
4.
K. S.
Chang
 et al.,
Appl. Phys. Lett.
84
,
3091
(
2004
).
5.
J.
Lee
,
J.
Park
,
A.
Kim
,
K.
Char
,
S.
Park
,
N.
Hur
, and
S. W.
Cheong
,
Appl. Phys. Lett.
86
,
012502
(
2005
).
6.
V. V.
Talanov
,
A.
Scherz
,
R. L.
Moreland
, and
A. R.
Schwartz
,
Appl. Phys. Lett.
88
,
192906
(
2006
).
7.
K. S.
Chang
,
M.
Aronova
,
O.
Famodu
,
I.
Takeuchi
,
S. E.
Lofland
,
J.
Hattrick-Simpers
, and
H.
Chang
,
Appl. Phys. Lett.
79
,
4411
(
2001
).
8.
V.
Bobnar
,
P.
Lunkenheimer
,
M.
Paraskevopoulos
, and
A.
Loidl
,
Phys. Rev. B
65
,
184403
(
2002
).
9.
D. C.
Sinclair
,
T. B.
Adams
,
F. D.
Morrison
, and
A. R.
West
,
Appl. Phys. Lett.
80
,
2153
(
2002
).
10.
V. V.
Daniel
,
Dielectric Relaxation
(
Academic
,
London, New York
,
1967
).
11.
A. K.
Jonscher
,
Dielectric Relaxation in Solids
(
Chelsea Dielectrics Press
,
London
,
1983
).
12.
C.
Gao
,
F.
Duewer
, and
X. D.
Xiang
,
Appl. Phys. Lett.
75
,
3005
(
1999
).
13.
C.
Gao
,
F.
Duewer
, and
X. D.
Xiang
,
Appl. Phys. Lett.
76
,
656
(
2000
).
14.
C.
Gao
,
B.
Hu
,
P.
Zhang
,
M.
Huang
,
W.
Liu
, and
I.
Takeuchi
,
Appl. Phys. Lett.
84
,
4647
(
2004
).
15.
A.
Imtiaz
,
M.
Pollak
,
S. M.
Anlage
,
J. D.
Barry
, and
J.
Melngailis
,
J. Appl. Phys.
97
,
044302
(
2005
).
16.
Z.
Wang
,
M. A.
Kelly
,
Z. -X.
Shen
,
L.
Shao
,
W. -K.
Chu
, and
H.
Edwards
,
Appl. Phys. Lett.
86
,
153118
(
2005
).
17.
D. E.
Steinhauer
,
C. P.
Vlahacos
,
F. C.
Wellstood
,
S. M.
Anlage
,
C.
Canedy
,
R.
Ramesh
,
A.
Stanishevsky
, and
J.
Melngailis
,
Appl. Phys. Lett.
75
,
3180
(
1999
).
18.
D. E.
Steinhauer
,
C. P.
Vlahacos
,
S. K.
Dutta
,
F. C.
Wellstood
, and
S. M.
Anlage
,
Appl. Phys. Lett.
71
,
1736
(
1997
).
19.
D. E.
Steinhauer
,
C. P.
Vlahacos
,
F. C.
Wellstood
,
S. M.
Anlage
,
C.
Canedy
,
R.
Ramesh
,
A.
Stanishevsky
, and
J.
Melngailis
,
Rev. Sci. Instrum.
71
,
2751
(
2000
).
20.
D. M.
Pozar
,
Microwave Engineering
, 3rd ed. (
Wiley
,
Hoboken, NJ
,
2005
).
21.
J. C.
Booth
,
I.
Takeuchi
, and
K. -S.
Chang
,
Appl. Phys. Lett.
87
,
082908
(
2005
).
You do not currently have access to this content.