In this study, a disk-shaped piezoelectric transformer was fabricated using lead-free (K,Na)NbO3-based ceramics with high mechanical quality factor. The transformer can operate in the fundamental or the third radial vibration mode. The transformer is poled along the thickness direction. The top surface is covered by ring/dot silver electrodes separated by an annular gap which serve as the input and output parts of the transformer, respectively. The bottom surface, fully covered with a silver electrode, is grounded as a common electrode. The dimensions of the top ring/dot electrodes are designed such that the third radial vibration mode can be strongly excited. The electrical properties of the transformer with diameter of 34.2mm and thickness of 1.9mm were measured. For a temperature rise of 35°C, the transformer has a maximum output power of 12W. With the matching load, its maximum efficiency is >95%, and maximum voltage gains are 6.5 and 3.9 for the fundamental and the third radial vibration modes, respectively. It has potential to be used in power supply units and other electronic circuits.

1.
C. A.
Rosen
,
K. A.
Fish
, and
H. C.
Rothenberg
, U.S. Patent No. 2830274 (April 8,
1958
).
2.
S.
Kawashima
,
O.
Ohnishi
,
H.
Hakamata
,
S.
Tagami
,
A.
Fukuoka
,
T.
Inoue
, and
S.
Hirose
,
Proc.-IEEE Ultrason. Symp.
1
,
525
(
1994
).
3.
Y.
Fuda
,
K.
Kumasaka
,
M.
Katsuno
,
H.
Sato
, and
Y.
Ino
,
Jpn. J. Appl. Phys., Part 1
36
,
3050
(
1997
).
4.
O.
Ohnishi
,
H.
Kishie
,
A.
Iwamoto
,
Y.
Sasaki
,
T.
Zaitsu
, and
T.
Inoue
,
Proc.-IEEE Ultrason. Symp.
1
,
483
(
1992
).
5.
K.
Nakamura
and
K.
Kumasaka
,
Proc.-IEEE Ultrason. Symp.
2
,
999
(
1995
).
6.
J. H.
Hu
,
Y.
Fuda
,
M.
Katsuno
, and
T.
Yoshida
,
Jpn. J. Appl. Phys., Part 1
38
,
3208
(
1999
).
7.
J. H.
Hu
,
H. L.
Li
,
Helen L. W.
Chan
, and
C. L.
Choy
,
Sens. Actuators, A
88
,
79
(
2001
).
8.
M.
Yamamoto
,
Y.
Sasaki
,
A.
Ochi
,
T.
Inoue
, and
S.
Hamamura
,
Jpn. J. Appl. Phys., Part 1
40
,
3637
(
2001
).
9.
J. L.
Du
,
J. H.
Hu
, and
K. J.
Tseng
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
502
(
2004
).
10.
M.
Shoyama
,
K.
Horikoshi
,
T.
Ninomiya
,
T.
Zaitsu
, and
Y.
Sasaki
Applied Power Electronics Conference and Exposition
2
,
573
(
1997
).
11.
D. G.
Hall
,
J. R.
Phillips
,
G. L.
Vaughn
,
D.
Forst
, and
H. W.
Mech
, U.S. Patent 5872419 (16 February
1999
).
12.
K.
Uehara
,
T.
Inoue
,
A.
Iwamoto
,
O.
Ohnishi
, and
Y.
Sasaki
, U.S. Patent 5278471 (11 January
1994
).
13.
P.
Laoratanakul
,
A. V.
Carazo
,
P.
Bouchilloux
, and
K.
Uchino
,
Jpn. J. Appl. Phys., Part 1
41
,
1446
(
2002
).
14.
S.
Priya
,
S.
Ural
,
H. W.
Kim
,
K.
Uchino
, and
T.
Ezaki
,
Jpn. J. Appl. Phys., Part 1
43
,
3503
(
2004
).
15.
S.
Priya
,
H.
Kim
,
S.
Ural
, and
K.
Uchino
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
810
(
2006
).
16.
Y.
Saito
,
H.
Takao
,
T.
Tani
,
T.
Nonoyama
,
K.
Takatori
,
T.
Homma
,
T.
Nagaya
, and
M.
Nakamura
,
Nature (London)
432
,
84
(
2004
).
17.
H. L.
Li
,
J. H.
Hu
, and
H. L. W.
Chan
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
1247
(
2004
).
18.
D. A.
Berlincourt
, U.S. Patent 3764848 (9 October
1973
).
19.
C. Y.
Lin
, Ph.D. dissertation,
Virginia Tech
,
1997
.
20.
J. L.
Du
,
J. H.
Hu
,
K. J.
Tseng
,
C. S.
Kai
, and
G. C.
Siong
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
579
(
2006
).
21.
P.
Laoratanakul
, Ph.D. dissertation,
Pennsylvania State University
,
2002
.
You do not currently have access to this content.