We present an approach to measure the angular dependence of the diffusely scattered intensity of a multiple scattering sample in backscattering geometry. Increasing scattering strength give rise to an increased width of the coherent backscattering and sets higher demands on the angular detection range. This is of particular interest in the search for the transition to Anderson localization of light. To cover a range of 60° to +85° from direct back-reflection, we introduced a new parallel intensity recording technique. This allows one-shot measurements, with fast alignment and short measuring time, which prevents the influence of illumination variations. Configurational average is achieved by rotating the sample and singly scattered light is suppressed with the use of circularly polarized light up to 97%. This implies that backscattering enhancements of almost two can be achieved. In combination with a standard setup for measuring small angles up to ±3°, a full characterization of the coherent backscattering cone can be achieved. With this setup we are able to accurately determine transport mean free paths as low as 235 nm.

1.
H. R.
Haller
,
C.
Destor
, and
D. S.
Cannell
,
Rev. Sci. Instrum.
54
,
973
(
1983
).
2.
R.
Lenke
and
G.
Maret
, in
Scattering in Polymeric and Colloidal Systems
, edited by
W.
Brown
and
K.
Mortensen
(
Gordon and Breach Scientific
,
New York
,
2000
), Chap. 1.
3.
S.
Eiden
and
G.
Maret
,
J. Colloid Interface Sci.
250
,
281
(
2002
).
4.
M.
Störzer
,
P.
Gross
,
C. M.
Aegerter
, and
G.
Maret
,
Phys. Rev. Lett.
96
,
063904
(
2006
).
6.
P. W.
Anderson
,
Philos. Mag. B
52
,
505
(
1985
).
7.
E.
Akkermans
,
P. E.
Wolf
, and
R.
Maynard
,
Phys. Rev. Lett.
56
,
1471
(
1986
).
8.
M. I.
Mishchenko
,
J. Opt. Soc. Am. A
9
,
978
(
1992
).
9.
P. E.
Wolf
and
G.
Maret
,
Phys. Rev. Lett.
55
,
2696
(
1985
).
10.
M. P.
Van Albada
and
A.
Lagedijk
,
Phys. Rev. Lett.
55
,
2692
(
1985
).
11.
D. S.
Wiersma
,
M. P.
van Albada
, and
A.
Lagendijk
,
Rev. Sci. Instrum.
66
,
5473
(
1995
).
12.
R.
Lenke
,
R.
Tweer
, and
G.
Maret
,
J. Opt. Soc. Am. A
4
,
293
(
2002
);
R.
Tweer
, Ph.D. thesis, Univ. of Konstanz (
2002
).
13.
A. F.
Ioffe
and
A. R.
Regel
,
Prog. Semicond.
4
,
237
(
1960
).
14.
J. X.
Zhu
,
D. J.
Pine
, and
D. A.
Weitz
,
Phys. Rev. A.
44
,
3948
(
1991
).
15.
J. C. M.
Garnett
,
Philos. Trans. R. Soc. London, Ser. A
203
,
385
(
1904
).
16.
Hamamatsu
, S5668.
17.
Hamamatsu
, S4011.
18.
Texas Instruments
, IVC102.
19.
Texas Instruments
, ADS8345 and ADS8344.
20.
ATMEL
, AT89S8252.
21.
F.
Erbacher
,
R.
Lenke
, and
G.
Maret
,
Europhys. Lett.
21
,
551
(
1993
).
22.
3M
, J53–333, made from Cellulose Acetate Butyrate.
23.
Our setup consists of a Rhodamin 6G dye laser (Coherent 699) pumped by an Ar+ Laser (Coherent Innova 400) producing pulses with a width of 20ps at a wavelength of 590 nm.
24.
D. S.
Wiersma
, Ph.D. thesis, Univ. of Amsterdam (
1995
).
25.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Pergamon
,
Oxford
,
1980
), 6th ed.
26.
G.
Mie
,
Ann. Phys.
25
,
377
(
1908
).
27.
LightLab
,
Far-field Miescattering version 1.0
(
Valley Scientific Inc.
,
1998
).
28.
D. S.
Wiersma
,
M. P.
van Albada
,
B. A.
van Tiggelen
, and
A.
Lagendijk
,
Phys. Rev. Lett.
74
,
4193
(
1995
).
You do not currently have access to this content.