One of the main challenges posed recently on pellet launcher systems in fusion-oriented plasma physics is the control of the plasma edge region. Strong energy bursts ejected from the plasma due to edge localized modes (ELMs) can form a severe threat for in-vessel components but can be mitigated by sufficiently frequent triggering of the underlying instabilities using hydrogen isotope pellet injection. However, pellet injection systems developed mainly for the task of ELM control, keeping the unwanted pellet fueling minimized, are still missing. Here, we report on a novel system developed under the premise of its suitability for control and mitigation of plasma edge instabilities. The system is based on the blower gun principle and is capable of combining high repetition rates up to 143 Hz with low pellet velocities. Thus, the flexibility of the accessible injection geometry can be maximized and the pellet size kept low. As a result the new system allows for an enhancement in the tokamak operation as well as for more sophisticated experiments investigating the underlying physics of the plasma edge instabilities. This article reports on the design of the new system, its main operational characteristics as determined in extensive test bed runs, and also its first test at the tokamak experiment ASDEX Upgrade.

1.
S. L.
Milora
 et al.,
Nucl. Fusion
35
,
657
(
1995
).
2.
L.
Baylor
 et al.,
Nucl. Fusion
32
,
2177
(
1992
).
3.
M.
Kaufmann
 et al.,
Nucl. Fusion
26
,
171
(
1986
).
4.
H. W.
Müller
 et al.,
Phys. Rev. Lett.
83
,
2199
(
1999
).
5.
P. T.
Lang
 et al.,
Nucl. Fusion
36
,
1531
(
1996
);
P. T.
Lang
 et al.,
Nucl. Fusion
36
,
153
E
(
1996
).
6.
P. T.
Lang
 et al.,
Phys. Rev. Lett.
79
,
1487
(
1997
).
7.
J.
Pamela
 et al.,
Nucl. Fusion
45
,
S63
(
2005
).
8.
F.
Federici
 et al.,
Plasma Phys. Controlled Fusion
45
,
1523
(
2003
).
9.
A.
Herrmann
,
Plasma Phys. Controlled Fusion
44
,
897
(
2002
).
10.
P. T.
Lang
 et al.,
Nucl. Fusion
43
,
1110
(
2003
).
11.
L. D.
Horton
 et al., 20th IAEA Conference, Vilamoura
2004
, EX/P3–4.
12.
A.
Kallenbach
 et al.,
J. Nucl. Mater.
337-339
,
732
(
2005
).
13.
P. T.
Lang
 et al.,
Rev. Sci. Instrum.
74
,
3974
(
2003
).
14.
S.
Combs
,
Rev. Sci. Instrum.
64
,
1679
(
1993
).
15.
R.
Gilliard
 et al.,
Rev. Sci. Instrum.
52
,
183
(
1981
).
16.
A.
Kallenbach
 et al.,
Nucl. Fusion
39
,
901
(
1999
).
17.
R.
Neu
 et al.,
Nucl. Fusion
45
,
209
(
2005
).
18.
J. G.
Leidenfrost
,
De Aquae Communis Nonnullis Qualitatibus Tractatus
(
Johann Straube
,
Duisburg, Germany
,
1756
). The Leidenfrost phenomenon is referred to as the levitation and sustainment of a cold body over a hot surface by establishing an insulating gas cushion. Originally observed and explained for levitation and sustainment of water drops on a hot plate by J.G. Leidenfrost, German scientist (1715–1794).
19.
V.
Mertens
 et al.,
Fusion Sci. Technol.
44
,
593
(
2003
).
20.
A.
Herrmann
and
O.
Gruber
,
Fusion Sci. Technol.
44
,
569
(
2003
).
21.
ASDEX Upgrade Team
,
Fusion Sci. Technol.
44
,
569
(
2003
).
22.
R.
Neu
,
Phys. Scr.
T123
,
33
(
2006
).
23.
G.
Kocsis
 et al.,
Rev. Sci. Instrum.
75
,
4754
(
2004
).
24.
A.
Lorenz
 et al.,
Fusion Eng. Des.
69
,
15
(
2003
).
25.
P. T.
Lang
 et al.,
Plasma Phys. Controlled Fusion
48
,
A141
(
2006
).
26.
A.
Polevoi
 et al.,
Nucl. Fusion
43
,
1072
(
2003
).
You do not currently have access to this content.