Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100nN onto 5μm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

1.
A.
Heilbronn
,
Jahrbuch für wiss. Botanik
61
,
284
(
1922
).
2.
H.
Freundlich
and
W.
Seifriz
,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl.
104
,
233
(
1923
).
3.
F. H. C.
Crick
and
A. F. W.
Hughes
,
Exp. Cell Res., Suppl.
1
,
37
(
1949
).
6.
F.
Amblard
,
B.
Yurke
,
A.
Pargellis
, and
S.
Leibler
,
Rev. Sci. Instrum.
67
,
818
(
1996
).
7.
A. H.
de Vries
,
B. E.
Krenn
,
R.
van Driel
, and
J. S.
Kanger
,
Biophys. J.
88
,
2137
(
2005
).
8.
J. K.
Fisher
,
J. R.
Cummings
,
K. V.
Desai
,
L.
Vicci
,
B.
Wilde
,
K.
Keller
,
C.
Weigle
,
G.
Bishop
,
R. M.
Taylor
,
C. W.
Davis
,
R. C.
Boucher
,
E. T.
O’Brien
, and
R.
Superfine
,
Rev. Sci. Instrum.
76
,
053711
(
2005
).
9.
J. K.
Fisher
,
J.
Cribb
,
K. V.
Desai
,
L.
Vicci
,
B.
Wilde
,
K.
Keller
,
R. M.
Taylor
,
J.
Haase
,
K.
Bloom
,
E. T.
O’Brien
, and
R.
Superfine
,
Rev. Sci. Instrum.
77
,
023702
(
2006
).
10.
M.
Sato
,
T. Z.
Wong
, and
R. D.
Allen
,
J. Cell Biol.
97
,
1089
(
1983
).
11.
W. H.
Guilford
and
R. W.
Gore
,
Am. J. Physiol.
263
,
C700
(
1992
).
12.
F.
Ziemann
,
J.
Radler
, and
E.
Sackmann
,
Biophys. J.
66
,
2210
(
1994
).
13.
B. G.
Hosu
,
K.
Jakab
,
P.
Banki
,
F. I.
Toth
, and
G.
Forgacs
,
Rev. Sci. Instrum.
74
,
4158
(
2003
).
14.
M.
Barbic
,
J. J.
Mock
,
A. P.
Gray
, and
S.
Schultz
,
Appl. Phys. Lett.
79
,
1897
(
2001
).
15.
F.
Assi
,
R.
Jenks
,
J.
Yang
,
C.
Love
, and
M.
Prentiss
,
J. Appl. Phys.
92
,
5584
(
2002
).
16.
C.
Gosse
and
V.
Croquette
,
Biophys. J.
82
,
3314
(
2002
).
17.
N.
Walter
,
C.
Selhuber
,
H.
Kessler
, and
J. P.
Spatz
,
Nano Lett.
6
,
398
(
2006
).
18.
B. D.
Matthews
,
D. R.
Overby
,
F. J.
Alenghat
,
J.
Karavitis
,
Y.
Numaguchi
,
P. G.
Allen
, and
D. E.
Ingber
,
Biochem. Biophys. Res. Commun.
313
,
758
(
2004
).
19.
A. R.
Bausch
,
F.
Ziemann
,
A. A.
Boulbitch
,
K.
Jacobson
, and
E.
Sackmann
,
Biophys. J.
75
,
2038
(
1998
).
20.
F. J.
Alenghat
,
B.
Fabry
,
K. Y.
Tsai
,
W. H.
Goldmann
, and
D. E.
Ingber
,
Biochem. Biophys. Res. Commun.
277
,
93
(
2000
).
21.
H.
Huang
,
J.
Sylvan
,
M.
Jonas
,
R.
Barresi
,
P. T. C.
So
,
K. P.
Campbell
, and
R. T.
Lee
,
Am. J. Physiol.: Cell Physiol.
288
,
C72
(
2005
).
22.
D. R.
Overby
,
B. D.
Matthews
,
E.
Alsberg
, and
D. E.
Ingber
,
Acta Biomaterialia
1
,
295
(
2005
).
23.
P. A.
Valberg
and
D. F.
Albertini
,
J. Cell Biol.
101
,
130
(
1985
).
24.
N.
Wang
,
J. P.
Butler
, and
D. E.
Ingber
,
Science
260
,
1124
(
1993
).
25.
B.
Fabry
,
G. N.
Maksym
,
J. P.
Butler
,
M.
Glogauer
,
D.
Navajas
, and
J. J.
Fredberg
,
Phys. Rev. Lett.
87
,
148102
(
2001
).
26.
B.
Fabry
,
G. N.
Maksym
,
S. A.
Shore
,
P. E.
Moore
,
R. A.
Panettieri
, Jr.
,
J. P.
Butler
, and
J. J.
Fredberg
,
J. Appl. Physiol.
91
,
986
(
2001
).
27.
S. M.
Mijailovich
,
M.
Kojic
,
M.
Zivkovic
,
B.
Fabry
, and
J. J.
Fredberg
,
J. Appl. Physiol.
93
,
1429
(
2002
).
28.
N. Q.
Balaban
,
U. S.
Schwarz
,
D.
Riveline
,
P.
Goichberg
,
G.
Tzur
,
I.
Sabanay
,
D.
Mahalu
,
S.
Safran
,
A.
Bershadsky
,
L.
Addadi
, and
B.
Geiger
,
Nat. Cell Biol.
3
,
466
(
2001
).
You do not currently have access to this content.