For decades impedance spectroscopy is used in technical laboratories and research departments to investigate effects or material characteristics that affect the impedance spectrum of the sensor. Establishing this analytical approach for process automation and stand-alone applications will deliver additional and valuable information beside traditional measurement techniques such as the measurement of temperature, flow rate, and conductivity, among others. As yet, most of the current impedance analysis methods are suited for laboratory applications only since they involve stand-alone network analyzers that are slow, expensive, large, or immobile. Furthermore, those systems offer a large range of functionality that is not being used in process control and other fields of application. We developed a sensor interface based on high speed direct digital signal processing offering wideband impedance spectrum analysis with high resolution for frequency adjustment, excellent noise rejection, very high measurement rate, and convenient data exchange to common interfaces. The electronics has been implemented on two small circuit boards and it is well suited for process control applications such as monitoring phase transitions, characterization of fluidal systems, and control of biological processes. The impedance spectrum analyzer can be customized easily for different measurement applications by adapting the appropriate sensor module. It has been tested for industrial applications, e.g., dielectric spectroscopy and high temperature gas analysis.

1.
E.
Barsoukov
and
J. R.
Macdonald
,
Impedance Spectroscopy
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2005
).
2.
U.
Kaatze
and
Yu.
Feldman
,
Meas. Sci. Technol.
17
,
R17
(
2006
).
3.
P.
Piela
,
R.
Fields
, and
P.
Zelenay
,
J. Electrochem. Soc.
153
,
A1902
(
2006
).
4.
P.
Papadopoulos
,
G.
Floudas
,
C.
Chi
, and
G.
Wegner
,
J. Chem. Phys.
120
,
2368
(
2004
).
5.
D. L.
Wooton
,
R. W.
Hirthe
, and
M. A.
Seitz
, U. S. Patent No. 7,049,831 B2 (
May 23, 2006
).
6.
M.
Tiitta
and
H.
Olkkonen
,
Rev. Sci. Instrum.
73
,
3093
(
2002
).
7.
J.
Schröder
,
J.
Borngräber
,
R.
Lucklum
, and
P. R.
Hauptmann
,
Rev. Sci. Instrum.
72
,
2750
(
2001
).
8.
D. F.
McCann
,
G. M.
Flewelling
,
G. P.
Bernhardt
, and
J. F.
Vetelino
, in
IEEE Ultrasonics Symposium
(
IEEE
,
New York
,
2006
), pp.
894
897
.
9.
E. H.
Grant
,
R. J.
Sheppard
, and
G. P.
South
,
Dielectric Behaviour of Biological Molecules in Solution
(
Clarendon
,
Oxford
,
1978
).
10.
Yu.
Feldman
,
A.
Andrianov
,
E.
Polygalov
,
G.
Romanychev
,
I.
Ermolina
,
Yu.
Zuev
, and
B.
Milgotin
,
Rev. Sci. Instrum.
67
,
3208
(
1996
).
11.
H.
Olkkonen
and
J. T.
Olkkonen
,
Rev. Sci. Instrum.
78
,
025104
(
2007
).
12.
C. A.
Mills
,
K. T. C.
Chai
,
M. J.
Milgrew
,
A.
Glidle
,
J. M.
Cooper
, and
D. R.S
Cumming
,
IEEE Sens. J.
6
,
996
(
2006
).
13.
R.
Schnitzer
,
C.
Reiter
,
K.-C.
Harms
,
E.
Benes
, and
M.
Groschl
,
IEEE Sens. J.
6
,
1314
(
2006
).
14.
S.
Doerner
,
T.
Schneider
,
J.
Schröder
, and
P. R.
Hauptmann
, in
Proceedings of IEEE Sensors
(
IEEE
,
New York
,
2003
), Vol.
1
, pp.
596
599
.
15.
R.
Lucklum
,
S.
Doerner
,
T.
Schneider
,
B.
Schlatt-Masuth
,
T.
Jacobs
, and
P. R.
Hauptmann
, in
IEEE International Frequency Control Symposium and Exposition
(
IEEE
,
New York
,
2006
), pp.
528
534
.
16.
C.
Offelli
and
D.
Petri
,
IEEE Trans. Instrum. Meas.
41
,
256
(
1992
).
17.
IEEE Std.
1057–1994 (R2001), IEEE Standard for Digitizing Waveform Recorders (
IEEE
, New York,
2001
), reaffirmed 2001.
18.
IEEE Std.
1241–2000, IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters (
IEEE
, New York,
2001
).
19.
M.
Bertocco
and
C.
Narduzzi
,
IEEE Trans. Instrum. Meas.
46
,
445
(
1997
).
20.
J.
Schröder
,
S.
Doerner
,
T.
Schneider
, and
P. R.
Hauptmann
,
Meas. Sci. Technol.
15
,
1271
(
2004
).
21.
S.
Doerner
,
T.
Schultz
,
T.
Schneider
,
K.
Sundmacher
, and
P. R.
Hauptmann
, in
Proceedings of IEEE Sensors
(
IEEE
,
Vienna, Austria
,
2004
), Vol.
2
, pp.
639
641
.
22.
T.
Schultz
,
S.
Zhou
, and
K.
Sundmacher
,
Chem. Eng. Technol.
24
,
1223
(
2001
).
23.
Z.
Qi
,
C.
He
,
M.
Hollett
,
A.
Attia
, and
A.
Jaufman
,
Electrochem. Solid-State Lett.
6
(
5
),
A88
(
2003
).
24.
D.
Richter
,
H.
Fritze
,
T.
Schneider
,
P.
Hauptmann
,
N.
Bauersfeld
,
K.-D.
Kramer
,
K.
Wiesner
,
M.
Fleischer
,
G.
Karle
, and
A.
Schubert
,
Sens. Actuators B
118
,
466
(
2006
).
25.
H.
Fritze
and
H. L.
Tuller
,
Appl. Phys. Lett.
78
,
976
(
2001
).
26.
H.
Fritze
,
M.
Schulz
,
H.
Seh
, and
H. L.
Tuller
,
Mater. Res. Soc. Symp. Proc.
835
,
A3
9
(
2005
).
27.
D.
Richter
,
H.
Fritze
,
T.
Schneider
,
P. R.
Hauptmann
,
N.
Bauersfeld
, and
K.-D.
Kramer
, in
SENSOR 2005 Proceedings
(
AMA Service GmbH, Wunstorf, Germany, Nurnberg, Germany, 2005
), Vol.
2
, pp.
19
24
.
28.
H.
Fritze
,
O.
Schneider
,
H.
Seh
, and
H. L.
Tuller
,
G.
Borchardt
,
Phys. Chem. Chem. Phys.
5
,
5207
(
2003
).
29.
N.
Bauersfeld
,
K.-D.
Kramer
, and
S.
Patzwahl
,
Fifth International Conference on Hybrid Intelligent Systems HIS '05
(
Rio de Janeiro, Brazil, 2005
), p.
6
.
You do not currently have access to this content.