We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200μm with parallelism better than 1μm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02103s1. This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1μm diameter silica colloids.

1.
H.
Löwen
,
J. Phys.: Condens. Matter
13
,
R415
(
2001
).
2.
B. J.
Ackerson
and
P. N.
Pusey
,
Phys. Rev. Lett.
61
,
1033
(
1988
).
3.
B. J.
Ackerson
and
N. A.
Clark
,
Phys. Rev. Lett.
46
,
123
(
1981
).
4.
I. W.
Hamley
,
J. A.
Pople
,
C.
Booth
,
Y.-W.
Yang
, and
S. M.
King
,
Langmuir
14
,
3182
(
1998
).
5.
Y. D.
Yan
,
J. K. G.
Dhont
,
C.
Smits
, and
H. N. W.
Lekkerkerker
,
Physica A
202
,
68
(
1994
).
6.
P.
Holmqvist
,
M. P.
Lettinga
,
J.
Buitenhuis
, and
J. K. G.
Dhont
,
Langmuir
21
,
10976
(
2005
).
7.
M. J.
Stevens
and
M. O.
Robbins
,
Phys. Rev. E
48
,
3778
(
1993
).
8.
D. E.
Smith
,
H. P.
Babcock
, and
S.
Chu
,
Science
283
,
1724
(
1999
).
9.
M. D.
Haw
,
W. C. K.
Poon
, and
P. N.
Pusey
,
Phys. Rev. E
57
,
6859
(
1998
).
10.
B. J.
Ackerson
and
N. A.
Clark
,
Phys. Rev. A
30
,
906
(
1984
).
11.
J.-F.
Berret
,
D. C.
Roux
,
G.
Porte
, and
P.
Lindner
,
Europhys. Lett.
25
,
521
(
1994
).
12.
O.
Volkova
,
S.
Cutillas
, and
G.
Bossis
,
Phys. Rev. Lett.
82
,
233
(
1999
).
13.
M. P.
Lettinga
,
K. O.
Kang
,
P.
Holmqvist
,
A.
Imhof
,
D.
Derks
, and
J. K. G.
Dhont
,
Phys. Rev. E
73
,
011412
(
2006
).
14.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
15.
Ch.
Münch
and
J.
Kalus
,
Rev. Sci. Instrum.
70
,
187
(
1999
).
16.
P.
Panine
,
M.
Gradzielski
, and
T.
Narayanan
,
Rev. Sci. Instrum.
74
,
2451
(
2003
).
17.
L.
Porcar
,
W. A.
Hamilton
,
P. D.
Butler
, and
G. G.
Warr
,
Rev. Sci. Instrum.
73
,
2345
(
2002
).
18.
E.
Eiser
,
F.
Molino
,
G.
Porte
, and
O.
Diat
,
Phys. Rev. E
61
,
6759
(
2000
).
19.
M.
Kisilak
,
H.
Anderson
,
N. S.
Babcock
,
M. R.
Stetzer
,
S. H. J.
Idziak
, and
E. B.
Sirota
,
Rev. Sci. Instrum.
72
,
4305
(
2001
).
20.
B. J.
Ackerson
,
J. B.
Hayter
,
N. A.
Clark
, and
L.
Cotter
,
J. Chem. Phys.
84
,
2344
(
1986
).
21.
S.
Ashdown
,
I.
Marković
,
R. H.
Ottewill
,
P.
Lindner
,
R. C.
Oberthür
, and
A. R.
Rennie
,
Langmuir
6
,
303
(
1990
).
22.
P.
Baroni
,
C.
Pujolle-Robic
, and
L.
Noirez
,
Rev. Sci. Instrum.
72
,
2686
(
2001
).
23.
D.
Beysens
,
M.
Gbadamassi
, and
L.
Boyer
,
Phys. Rev. Lett.
43
,
1253
(
1979
).
24.
B. J.
Ackerson
,
J. Rheol.
34
,
553
(
1990
).
25.
J. W.
van Egmond
,
D. E.
Werner
, and
G. G.
Fuller
,
J. Chem. Phys.
96
,
7742
(
1992
).
26.
Y. D.
Yan
and
J. K. G.
Dhont
,
Physica A
198
,
78
(
1993
).
27.
J.
Läuger
and
W.
Gronski
,
Rheol. Acta
34
,
70
(
1995
).
28.
I.
Cohen
,
T. G.
Mason
, and
D. A.
Weitz
,
Phys. Rev. Lett.
93
,
046001
(
2004
).
29.
D.
Derks
,
H.
Wisman
,
A.
van Blaaderen
, and
A.
Imhof
,
J. Phys.: Condens. Matter
16
,
S3917
(
2004
).
30.
M.
Paques
,
A.
Imhof
,
A.
van Blaaderen
, and
Y.
Nicolas
, European Patent number EP1312910.
31.
R.
Biehl
and
T.
Palberg
,
Rev. Sci. Instrum.
75
,
906
(
2004
).
32.
Y.
Nicolas
,
M.
Paques
,
A.
Knaebel
,
A.
Steyer
,
J. P.
Münch
,
T. B. J.
Blijdenstein
, and
G. A.
van Aken
,
Rev. Sci. Instrum.
74
,
3838
(
2003
).
33.
V. A.
Tolpekin
,
M. H. G.
Duits
,
D.
van den Ende
, and
J.
Mellema
,
Langmuir
20
,
2614
(
2004
).
34.
N.
Grizzuti
and
O.
Bifulco
,
Rheol. Acta
36
,
406
(
1997
).
35.
K. H.
de Haas
,
D.
van den Ende
,
C.
Blom
,
E. G.
Altena
,
G. J.
Beukema
, and
J.
Mellema
,
Rev. Sci. Instrum.
69
,
1391
(
1998
).
36.
V.
Breedveld
,
D.
van den Ende
,
M.
Bosscher
,
R. J. J.
Jongschaap
, and
J.
Mellema
,
Phys. Rev. E
63
,
021403
(
2001
).
37.
S.
Kim
,
J.
Yu
, and
C. C.
Han
,
Rev. Sci. Instrum.
67
,
3940
(
1996
).
38.
M. D.
Haw
,
W. C. K.
Poon
,
P. N.
Pusey
,
P.
Hebraud
, and
F.
Lequeux
,
Phys. Rev. E
58
,
4673
(
1998
).
39.
S.
Guido
and
M.
Simeone
,
J. Fluid Mech.
357
,
1
(
1998
).
40.
K.
Matsuzaka
and
T.
Hashimoto
,
Rev. Sci. Instrum.
70
,
2387
(
1999
).
41.
T.
Solomon
and
M. J.
Solomon
,
J. Chem. Phys.
124
,
134905
(
2006
).
42.
M.
Minsky
,
Scanning
10
,
128
(
1988
).
43.
A.
van Blaaderen
,
A.
Imhof
,
W.
Hage
, and
A.
Vrij
,
Langmuir
8
,
1514
(
1992
).
44.
A.
van Blaaderen
and
P.
Wiltzius
,
Science
270
,
1177
(
1995
).
45.
A.
van Blaaderen
,
Prog. Colloid Polym. Sci.
104
,
59
(
1997
).
46.
W. K.
Kegel
and
A.
van Blaaderen
,
Science
287
,
290
(
2000
).
47.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P. N.
Pusey
, and
D. A.
Weitz
,
Science
292
,
258
(
2001
).
48.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
146
,
501
(
1934
).
49.
W.
Stöber
,
A.
Fink
, and
E.
Bohn
,
J. Colloid Interface Sci.
26
,
62
(
1968
).
50.
A.
van Blaaderen
and
A.
Vrij
,
Langmuir
8
,
2921
(
1992
).
You do not currently have access to this content.