The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion.
REFERENCES
1.
E. H.
Dowell
and D.
Tang
, J. Appl. Phys.
90
, 5606
(2001
).2.
Encyclopedia Britannica (online edition).
3.
R. N.
Kleiman
, G. K.
Kaminsky
, J. D.
Reppy
, R.
Pindak
, and D. J.
Bishop
, Rev. Sci. Instrum.
56
, 2088
(1985
).4.
L.
Haiberger
, D.
Jager
, and S.
Schiller
, Rev. Sci. Instrum.
76
, 45106
(2005
).5.
A. N.
Cleland
and M. L.
Roukes
, Nature (London)
392
, 160
(1998
).6.
A. N.
Cleland
and M. L.
Roukes
, Appl. Phys. Lett.
69
, 2653
(1996
).7.
E. R.
Brown
, IEEE Trans. Microwave Theory Tech.
46
, 1868
(1998
).8.
R.
Raiteri
, M.
Grattarola
, H.-J.
Butt
, and P.
Skladal
, Sens. Actuators B
79
, 115
(2001
).9.
S.
Evoy
, A.
Olkhovets
, L.
Sekaric
, J. M.
Parpia
, H. G.
Craighead
, and D. W.
Carr
, Appl. Phys. Lett.
77
, 2397
(2000
).10.
L.
Sekaric
, J. M.
Parpia
, H. G.
Craighead
, T.
Feygelson
, B. H.
Houston
, and J. E.
Butler
, Appl. Phys. Lett.
81
, 4455
(2002
).11.
L.
Sekaric
, D. W.
Carr
, J. M.
Parpia
, and H. G.
Craighead
, Sens. Actuators, A
101
, 215
(2002
).12.
13.
X.
Liu
, J. F.
Vignola
, D. M.
Photiadis
, A.
Sarkissian
, B. H.
Houston
, R. D.
Merithew
, and R. O.
Pohl
, Physica B
316–317
, 393
(2002
).14.
X.
Liu
, J. F.
Vignola
, H. J.
Simpson
, B. R.
Lemon
, B. H.
Houston
, and D. M.
Photiadis
, J. Appl. Phys.
97
, 023524
(2005
).15.
R. E.
Mihailovich
and N. C.
MacDonald
, Sens. Actuators, A
50
, 199
(1995
).16.
D. W.
Carr
, S.
Evoy
, L.
Sekaric
, H. G.
Craighead
, and J. M.
Parpia
, Appl. Phys. Lett.
77
, 1545
(2000
).17.
A.
Olkhovets
, S.
Evoy
, D. W.
Carr
, J. M.
Parpia
, and H. G.
Craighead
, J. Vac. Sci. Technol. B
18
, 3549
(2000
).18.
K. L.
Turner
and W.
Zhang
, Proceedings of the American Control Conference
, Arlington
, 25–27 Jun 2001
, Vol. 2
, pp. 1214
–1218
.19.
R.
Liu
, B.
Paden
, and K.
Turner
, Proceedings of the Annual IEEE International Frequency Control Symposium
, Seattle
, 6–8 Jun 2001
pp. 556
–563
.20.
B.
Ilic
, H. G.
Craighead
, S.
Krylov
, W.
Senaratne
, C.
Ober
, and P.
Neuzil
, J. Appl. Phys.
95
, 3694
(2004
).21.
S. J.
Papadakis
, A. R.
Hall
, P. A.
Williams
, L.
Vicci
, M. R.
Falvo
, R.
Superfine
, and S.
Washburn
, Phys. Rev. Lett.
93
, 146101
(2004
).22.
23.
N.
Lobontiu
, Mechanical Design of Microresonators: Modeling and Applications
(McGraw-Hill
, New York
, 2005
).24.
N.
Lobontiu
and E.
Garcia
, J. Microelectromech. Syst.
13
, 41
(2004
).25.
N.
Lobontiu
, Compliant Mechanisms: Design of Flexure Hinges
(CRC
, Boca Raton, FL
, 2002
).26.
N.
Lobontiu
and E.
Garcia
, Mechanics of Microelectromechanical Systems
(Springer
, New York
, 2004
).27.
F. P.
Beer
, E. R.
Johnston
, W. E.
Clausen
, and G. H.
Staab
, Vector Dynamics for Engineers, Dynamics
, 7th ed. (McGraw-Hill
, New York
, 2003
).© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.