The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion.

1.
E. H.
Dowell
and
D.
Tang
,
J. Appl. Phys.
90
,
5606
(
2001
).
2.
Encyclopedia Britannica (online edition).
3.
R. N.
Kleiman
,
G. K.
Kaminsky
,
J. D.
Reppy
,
R.
Pindak
, and
D. J.
Bishop
,
Rev. Sci. Instrum.
56
,
2088
(
1985
).
4.
L.
Haiberger
,
D.
Jager
, and
S.
Schiller
,
Rev. Sci. Instrum.
76
,
45106
(
2005
).
5.
A. N.
Cleland
and
M. L.
Roukes
,
Nature (London)
392
,
160
(
1998
).
6.
A. N.
Cleland
and
M. L.
Roukes
,
Appl. Phys. Lett.
69
,
2653
(
1996
).
7.
E. R.
Brown
,
IEEE Trans. Microwave Theory Tech.
46
,
1868
(
1998
).
8.
R.
Raiteri
,
M.
Grattarola
,
H.-J.
Butt
, and
P.
Skladal
,
Sens. Actuators B
79
,
115
(
2001
).
9.
S.
Evoy
,
A.
Olkhovets
,
L.
Sekaric
,
J. M.
Parpia
,
H. G.
Craighead
, and
D. W.
Carr
,
Appl. Phys. Lett.
77
,
2397
(
2000
).
10.
L.
Sekaric
,
J. M.
Parpia
,
H. G.
Craighead
,
T.
Feygelson
,
B. H.
Houston
, and
J. E.
Butler
,
Appl. Phys. Lett.
81
,
4455
(
2002
).
11.
L.
Sekaric
,
D. W.
Carr
,
J. M.
Parpia
, and
H. G.
Craighead
,
Sens. Actuators, A
101
,
215
(
2002
).
12.
B. H.
Houston
 et al.,
Mater. Sci. Eng., A
370
,
407
(
2004
).
13.
X.
Liu
,
J. F.
Vignola
,
D. M.
Photiadis
,
A.
Sarkissian
,
B. H.
Houston
,
R. D.
Merithew
, and
R. O.
Pohl
,
Physica B
316–317
,
393
(
2002
).
14.
X.
Liu
,
J. F.
Vignola
,
H. J.
Simpson
,
B. R.
Lemon
,
B. H.
Houston
, and
D. M.
Photiadis
,
J. Appl. Phys.
97
,
023524
(
2005
).
15.
R. E.
Mihailovich
and
N. C.
MacDonald
,
Sens. Actuators, A
50
,
199
(
1995
).
16.
D. W.
Carr
,
S.
Evoy
,
L.
Sekaric
,
H. G.
Craighead
, and
J. M.
Parpia
,
Appl. Phys. Lett.
77
,
1545
(
2000
).
17.
A.
Olkhovets
,
S.
Evoy
,
D. W.
Carr
,
J. M.
Parpia
, and
H. G.
Craighead
,
J. Vac. Sci. Technol. B
18
,
3549
(
2000
).
18.
K. L.
Turner
and
W.
Zhang
,
Proceedings of the American Control Conference
,
Arlington
, 25–27 Jun
2001
, Vol.
2
, pp.
1214
1218
.
19.
R.
Liu
,
B.
Paden
, and
K.
Turner
,
Proceedings of the Annual IEEE International Frequency Control Symposium
,
Seattle
, 6–8 Jun
2001
pp.
556
563
.
20.
B.
Ilic
,
H. G.
Craighead
,
S.
Krylov
,
W.
Senaratne
,
C.
Ober
, and
P.
Neuzil
,
J. Appl. Phys.
95
,
3694
(
2004
).
21.
S. J.
Papadakis
,
A. R.
Hall
,
P. A.
Williams
,
L.
Vicci
,
M. R.
Falvo
,
R.
Superfine
, and
S.
Washburn
,
Phys. Rev. Lett.
93
,
146101
(
2004
).
22.
I.
Dufour
and
L.
Fadel
,
Sens. Actuators B
91
,
353
(
2003
).
23.
N.
Lobontiu
,
Mechanical Design of Microresonators: Modeling and Applications
(
McGraw-Hill
,
New York
,
2005
).
24.
N.
Lobontiu
and
E.
Garcia
,
J. Microelectromech. Syst.
13
,
41
(
2004
).
25.
N.
Lobontiu
,
Compliant Mechanisms: Design of Flexure Hinges
(
CRC
,
Boca Raton, FL
,
2002
).
26.
N.
Lobontiu
and
E.
Garcia
,
Mechanics of Microelectromechanical Systems
(
Springer
,
New York
,
2004
).
27.
F. P.
Beer
,
E. R.
Johnston
,
W. E.
Clausen
, and
G. H.
Staab
,
Vector Dynamics for Engineers, Dynamics
, 7th ed. (
McGraw-Hill
,
New York
,
2003
).
You do not currently have access to this content.