This article presents a new imaging spectrometer called autonomous tunable filtering system. The instrument acquires sequential images at different spectral wavelengths in the visible and near infrared range of the electromagnetic spectrum. The spectral selection is performed by an acousto-optic tunable filter (AOTF), which is driven by a custom radio-frequency (rf) generator based on a direct digital synthesizer (DDS). The DDS allows a high flexibility in terms of acquisition speed and bandwidth selection. The rf power is dynamically controlled to drive the AOTF with the optimum value for each wavelength. The images are formed through a carefully designed optical layout and acquired with a high performance digital camera. The application software controls the instrument and acquires the raw spectral images from the camera. This software optionally corrects the image for the AOTF nonidealities, such as diffraction efficiency variations, spatial nonuniformity, and chromatic aberration, and generates a single multiband image file. Moreover, the software can calculate the reflectance or transmittance of the acquired images. The instrument has been calibrated to give precise and repetitive measurements and has been validated against a high performance point spectrometer. As a case example, the instrument has been successfully used for the mapping of chlorophyll content of plant leaves from their multispectral reflectance images.

1.
D. E.
Bowker
,
R. E.
Davis
,
D. L.
Myrick
,
K.
Stacy
, and
W. T.
Jones
,
Spectral Reflectances of Natural Targets for Use in Remote Sensing Studies
(
NASA
,
Washington, DC
,
1985
), NASA Reference Publication 1139.
2.
C. S.
Creaser
and
A. M. C.
Davies
,
Analytical Applications of Spectroscopy
(
Royal Society of Chemistry
,
Cambridge
,
1988
).
3.
H. J.
Swatland
,
Canadian Institute of Food Science and Technology Journal
22
,
390
(
1989
).
4.
R. P.
Cogdill
and
J. K.
Drenne
,
NIR News
16
,
23
(
2005
).
5.
J.
Xu
and
R.
Stroud
,
Acousto-Optic Devices: Principles, Design and Applications
(
Wiley-Interscience
,
New York
,
1992
).
6.
E. S.
Wachman
,
W.
Niu W
, and
D. L.
Farkas
,
Biophys. J.
73
,
1215
(
1997
).
7.
T.
Vo-Dinh
,
B.
Cullum
, and
P.
Kasili
,
J. Phys. D
26
,
1663
(
2003
).
8.
V. Y.
Molchanov
,
V. M.
Lyuty
,
V. F.
Esipov
,
S. P.
Anikin
,
O. Y.
Makarov
, and
N. P.
Solodovnikov
,
Astron. Lett.
28
,
713
(
2002
).
11.
J.
Romier
,
J.
Selves
, and
J.
Gastellu-Etchegorry
,
Rev. Sci. Instrum.
69
,
2859
(
1998
).
13.
I. C.
Chang
,
Appl. Phys. Lett.
25
,
370
(
1974
).
14.
L.
Bei
,
G. I.
Dennis
,
H. M.
Miller
,
T. W.
Spaine
, and
J. W.
Carnahann
,
Prog. Quantum Electron.
28
,
67
(
2004
).
15.
L. J.
Denes
,
M. S.
Gottlieb
, and
B.
Kaminsky
,
Opt. Eng. (Bellingham)
37
,
1262
(
1998
).
16.
N.
Gat
,
Proc. SPIE
4056
,
50
(
2000
).
17.
D. R.
Suhre
,
L. J.
Denes
, and
N.
Gupta
,
Appl. Opt.
43
,
1255
(
2004
).
18.
Analog Devices Inc.
,
A technical tutorial on digital signal synthesis
(from the web: www.analog.com,
1999
).
23.
J.
Hynecek
,
IEEE Trans. Electron Devices
48
(
2001
).
25.
G. A.
Blackburn
,
Remote Sens. Environ.
66
,
273
(
1998
).
26.
J.
Vila-Frances
,
E.
Ribes-Gómez
,
C.
Ibáñez-López
,
L.
Gomez-Chova
,
J.
Muñoz-Marí
,
J.
Amorós-López
, and
J.
Calpe-Maravilla
,
Proc. SPIE
5953
,
216
(
2005
).
You do not currently have access to this content.