Phase shift cavity ring down is a technique that due to its long optical path length is an ideal method to detect weak absorptions. Coupling the method to a custom fitted cryostat allows gas phase molecules to be studied at cryogenic temperatures in a thermally isolated vacuum chamber. A novel design is described to construct the complete instrument. With optical cavities of length 1043cm, optical path lengths between 200m and 6km have been achieved. High vibrational overtones C–H (Δυ=5) are measured at 130K (methane), 150K (ethylene), and 155K (ethane). Oscillator strengths of each molecule calculated at different temperatures are in excellent agreement. The experimental setup can be used to study kinetics and spectroscopy of atmospheric molecules, planetary atmospheres, and molecular complexes in the gas phase. Low temperatures can be obtained using liquid He or liquid N2 as cryogens.

1.
C. J.
Moehnke
,
E. K.
Lewis
,
A.
Lopez-Calvo
, and
C. E.
Manzanares
,
Chem. Phys. Lett.
418
,
576
(
2006
).
2.
E. K.
Lewis
,
C. J.
Moehnke
, and
C. E.
Manzanares
,
Chem. Phys. Lett.
394
,
25
(
2004
).
3.
E. K.
Lewis
,
D.
Reynolds
,
X.
Li
,
G.
deVillele
,
C.
Leduc
,
D. L.
Cedeño
, and
C. E.
Manzanares
,
Chem. Phys. Lett.
334
,
357
(
2001
).
4.
J. M.
Herbelin
,
J. A.
McKay
,
M. A.
Kwok
,
R. H.
Ueunten
,
D. S.
Urevig
,
D. J.
Spencer
, and
D. J.
Benard
,
Appl. Opt.
19
,
144
(
1980
).
5.
R.
Engeln
,
G.
von Helden
,
G.
Berden
, and
G.
Meijer
,
Chem. Phys. Lett.
262
,
105
(
1996
).
6.
D. Z.
Anderson
,
J. C.
Frisch
, and
C. S.
Masser
,
Appl. Opt.
23
,
1238
(
1984
).
7.
A.
O’Keefe
and
D. A. G.
Deacon
,
Rev. Sci. Instrum.
59
,
2544
(
1988
).
8.
K. W.
Busch
and
M. A.
Busch
,
Cavity-Ringdown Spectroscopy
(
American Chemical Society
,
Washington, DC
,
1999
).
9.
G.
Berden
,
R.
Peeters
, and
G.
Meijer
,
Int. Rev. Phys. Chem.
19
,
565
(
2000
).
10.
M.
Mazurenka
,
A. J.
Orr-Ewing
,
R.
Peverall
, and
G. A. D.
Ritchie
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
101
,
100
(
2005
).
11.
M.
Bitter
,
S. M.
Ball
,
I. M.
Povey
, and
R. L.
Jones
,
Atmos. Chem. Phys.
5
,
3491
(
2005
).
12.
D. B.
Atkinson
,
Analyst (Cambridge, U.K.)
128
,
117
(
2003
).
13.
J. B.
Paul
,
C. P.
Collier
,
R. J.
Saykally
,
J. J.
Scherer
, and
A. J.
O’Keefe
,
J. Phys. Chem. A
101
,
5211
(
1997
).
14.
J. B.
Paul
and
R. J.
Saykally
,
Anal. Chem.
101
,
5211
(
1997
).
15.
A. J.
Huneycutt
,
R. N.
Casaes
,
B. J.
McCall
,
C.
Chung
,
Y.
Lee
, and
R. J.
Saykally
,
ChemPhysChem
5
,
321
(
2004
).
16.
R. N.
Casaes
,
J. B.
Paul
,
R. P.
McLaughlin
,
R. J.
Saykally
, and
T.
van Mourik
,
J. Phys. Chem. A
108
,
10989
(
2004
).
17.
R. A.
Provencal
,
R. N.
Casaes
,
K.
Roth
,
J. B.
Paul
,
C. N.
Chapo
,
R. J.
Saykally
,
G. S.
Tschumper
, and
H. F.
Schaefer
 III
,
J. Phys. Chem. A
104
,
1243
(
2000
).
18.
J.
Morville
,
D.
Romanini
,
A.
Campargue
, and
R.
Bacis
,
Chem. Phys. Lett.
363
,
498
(
2002
).
19.
F.
Duschinsky
,
Z. Phys.
81
,
7
(
1933
).
20.
J. B.
Birks
and
W. A.
Little
,
Proc. Phys. Soc. A
66
,
921
(
1953
).
21.
E. A.
Bailey
, Jr.
and
G. K.
Rollefson
,
J. Chem. Phys.
21
,
1315
(
1953
).
22.
D. M.
Jameson
,
E.
Gratton
, and
R. D.
Hall
,
Appl. Spectrosc. Rev.
20
,
55
(
1984
).
23.
P. W.
Atkins
,
Molecular Quantum Mechanics
, 2nd ed. (
Oxford University Press
,
Oxford
,
1983
).
24.
J. H.
Gutow
,
J.
Davidsson
, and
R. N.
Zare
,
Chem. Phys. Lett.
185
,
120
(
1991
).
25.
J. U.
White
,
J. Opt. Soc. Am.
32
,
285
(
1942
).
26.
G.
Herzberg
,
Astrophys. J.
115
,
337
(
1952
).
27.
A.
Watanabe
and
H. L.
Welsh
,
Can. J. Phys.
45
,
820
(
1965
).
28.
R. P.
Blickensderfer
,
G. E.
Ewing
, and
R.
Leonard
,
Appl. Opt.
7
,
2214
(
1968
).
29.
R. W.
McKellar
,
N.
Rich
, and
V.
Soots
,
Appl. Opt.
9
,
222
(
1970
).
30.
G. E.
Ewing
,
Acc. Chem. Res.
8
,
185
(
1975
).
31.
A. S.
Pine
and
B. J.
Howard
,
J. Chem. Phys.
84
,
590
(
1986
).
32.
G. T.
Fraser
and
A. S.
Pine
,
J. Chem. Phys.
85
,
2502
(
1986
).
33.
F. M.
Wang
,
K.
Iqbal
,
H.-G.
Kraft
,
M.
Luckstead
,
W. C.
Eue
, and
J. W.
Bevan
,
Can. J. Chem.
60
,
1969
(
1982
).
34.
A. R. W.
McKellar
,
Faraday Discuss.
97
,
69
(
1994
).
35.
A. R. W.
McKellar
,
Faraday Discuss. Chem. Soc.
73
,
89
(
1982
).
36.
A. R. W.
McKellar
,
J. Chem. Phys.
122
,
174313
(
2005
).
37.
C.
Xia
and
A. R. W.
McKellar
,
J. Mol. Spectrosc.
229
,
39
(
2005
).
38.
A. R. W.
McKellar
,
J. Chem. Phys.
122
,
084320
(
2005
).
39.
A. R. W.
McKellar
,
J. Chem. Phys.
112
,
9282
(
2000
).
40.
B.
Conrath
 et al.,
Science
246
,
1454
(
1989
).
41.
A. L.
Broadfoot
 et al.,
Science
246
,
1459
(
1989
).
42.
R.
Hanel
 et al.,
Science
233
,
70
(
1986
).
43.
A. L.
Broadfoot
 et al.,
Science
233
,
74
(
1986
).
44.
R.
Hanel
 et al.,
Science
212
,
192
(
1981
).
45.
A. L.
Broadfoot
 et al.,
Science
212
,
206
(
1981
).
46.
G. L.
Tyler
,
V. R.
Eshleman
,
J. D.
Anderson
,
G. S.
Levy
,
G. F.
Lindal
,
G. E.
Wood
, and
T. A.
Croft
,
Science
212
,
201
(
1981
).
47.
W. C.
Maguire
,
R. A.
Hanel
,
D. E.
Jennings
,
V. G.
Kunde
, and
R. E.
Samuelson
,
Nature (London)
292
,
683
(
1981
).
48.
V. G.
Kunde
,
A. C.
Aikin
,
R. A.
Hanel
,
D. E.
Jennings
,
W. C.
Maguire
, and
R.
Samuelson
,
Nature (London)
292
,
686
(
1981
).
49.
R. E.
Samuelson
,
R. A.
Hanel
,
V. G.
Kunde
, and
W. C.
Maguire
,
Nature (London)
292
,
688
(
1981
).
50.
F. M.
Flasar
,
R. E.
Samuelson
, and
B. J.
Conrath
,
Nature (London)
292
,
693
(
1981
).
51.
R.
Hanel
 et al.,
Science
204
,
972
(
1979
).
52.
R.
Hanel
 et al.,
Science
206
,
952
(
1979
).
You do not currently have access to this content.