A fast, sensitive, automated Fourier transform (FT) photoluminescence (PL) spectrometer with tunable excitation has been developed for analyzing carbon nanotube suspensions over a wide spectral range. A commercially available spectrometer was modified by the addition of a tunable excitation source, custom collection optics, and computer software to provide control and automated data collection. The apparatus enables excitation from 400to1100nm and detection from 825to1700nm, permitting the analysis of virtually all semiconducting single-walled nanotubes (SWNTs), including those produced by the high pressure carbon monoxide conversion and laser processes. The FT approach provides an excellent combination of high sensitivity and fast measurement. The speed advantage exists because the entire emission spectrum is collected simultaneously, while the sensitivity advantage stems from the high optical throughput. The high sensitivity is demonstrated in the measurement of very dilute SWNT suspensions and the observation of novel spectral features, and the speed is demonstrated by measuring the real-time changes in the SWNT PL during rebundling. This contribution describes the assembly of components, the methods for automating data collection, and the procedures for correcting the wavelength-dependent excitation intensity and the interferometer and detector responses.

1.
M. J.
O’Connell
 et al,
Science
297
,
593
(
2002
).
2.
M.
Jones
,
C.
Engtrakul
,
W. K.
Metzger
,
R. J.
Ellingson
,
A. J.
Nozik
,
M. J.
Heben
, and
G.
Rumbles
,
Phys. Rev. B
71
,
115426
(
2005
).
3.
J.
Jiang
,
R.
Saito
,
A.
Gruneis
,
S. G.
Chou
,
G. G.
Samsonidze
,
A.
Jorio
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
71
,
205420
(
2005
).
4.
M. S.
Arnold
,
J. E.
Sharping
,
S. I.
Stupp
,
P.
Kumar
, and
M. C.
Hersam
,
Nano Lett.
3
,
1549
(
2003
).
5.
J. A.
Misewich
,
R.
Martel
,
P.
Avouris
,
J. C.
Tsang
,
S.
Heinze
, and
J.
Tersoff
,
Science
300
,
783
(
2003
).
6.
Z. C.
Wu
,
Z. H.
Chen
,
X
Du
, et al,
Science
305
,
1273
(
2004
).
7.
M.
Freitag
,
Y.
Martin
,
J. A.
Miscwich
,
R.
Martel
, and
P.
Avouris
,
Nano Lett.
3
,
1067
(
2003
).
8.
S.
Reich
,
C.
Thomsen
, and
J.
Robertson
,
Phys. Rev. Lett.
95
,
077402
(
2005
).
9.
S. M.
Bachilo
,
M. S.
Strano
,
C.
Kittrell
,
R. H.
Hauge
,
R. E.
Smalley
, and
R. B.
Weisman
,
Science
298
,
2361
(
2002
).
10.
S.
Lebedkin
,
K.
Arnold
,
F.
Hennrich
,
R.
Krupke
,
B.
Renker
, and
M. M.
Kappes
,
New J. Phys.
5
(
2003
).
11.
Y.
Miyauchi
,
S.
Chiashi
,
Y.
Murakami
,
Y.
Hayashida
, and
S.
Maruyama
,
Chem. Phys. Lett.
387
,
198
(
2003
).
12.
S.
Iijima
and
T.
Ichihashi
,
Nature (London)
363
,
603
(
1993
).
13.
H.
Kataura
,
Y.
Kumazawa
,
Y.
Maniwa
,
I.
Umezu
,
S.
Suzuki
,
Y.
Ohtsuka
, and
Y.
Achiba
,
Synth. Met.
103
,
2555
(
1999
).
14.
F.
Wang
,
G.
Dukovic
,
L. E.
Brus
, and
T. F.
Heinz
,
Phys. Rev. Lett.
92
,
177401
(
2004
).
15.
P. R.
Griffiths
,
Transform Techniques in Chemistry
(
Plenum
,
New York, NY
,
1978
).
16.
P.
Fellgett
,
J. Phys. Radium
19
,
187
(
1958
).
17.
P. R.
Griffiths
,
H. J.
Sloane
, and
R. W.
Hannah
,
Appl. Spectrosc.
31
,
485
(
1977
).
18.
P.
Jacquinot
and
J. C.
Dufour
,
J. Rech. C. N. R. S.
6
,
91
(
1948
).
19.
J.
Barbillat
,
P.
Le Barny
,
L.
Divay
,
E.
Lallier
,
A.
Grisard
,
R.
Van Deun
, and
P.
Fias
,
Rev. Sci. Instrum.
74
,
4954
(
2003
).
20.
J.
Connes
and
P.
Connes
,
J. Opt. Soc. Am.
56
,
896
(
1966
).
21.

The RG 850 filter (Melles Griot 03 FCG 118) is retained for excitation at wavelengths longer than 815nm. Additionally, the RG 1000 filter (Melles Griot 03 FCG 113) is used for excitation wavelength beyond 850nm, and a 1200nm long-pass filter is used (TFI Technologies 1200LP) for excitation wavelength longer than 1000nm.

22.

In creating a DDE connection with OMNIC, the service input should be set to OMNIC and the topic input should be set to SPECTRA.

23.
LABVIEW includes DDE open conversation. vi, DDE execute. vi, and DDE close conversation. vi, VIs that enable initiation of a connection, the statement for OMNIC to execute, and the termination of the connection, respectively. Source ⟨http://zone.ni.com/devzone/devzone.nsf/webcategories/B7AA6C07A04F6A708625683C000023F6
24.
M. F.
Islam
,
E.
Rojas
,
D. M.
Bergey
,
A. T.
Johnson
, and
A. G.
Yodh
,
Nano Lett.
3
,
269
(
2003
).
25.
A. C.
Dillon
,
T.
Gennett
,
K. M.
Jones
,
J. L.
Alleman
,
P. A.
Parilla
, and
M. J.
Heben
,
Adv. Mater. (Weinheim, Ger.)
11
,
1354
(
1999
).
26.
T.
Gennett
,
A. C.
Dillon
,
J. L.
Alleman
,
K. M.
Jones
,
F. S.
Hasoon
, and
M. J.
Heben
,
Chem. Mater.
12
,
599
(
2000
).
27.
P.
Delaney
,
H. J.
Choi
,
J.
Ihm
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. B
60
,
7899
(
1999
).
28.
Y. K.
Kwon
,
S.
Saito
, and
D.
Tomanek
,
Phys. Rev. B
58
,
R13314
(
1998
).
29.
P.
Delaney
,
H. J.
Choi
,
J.
Ihm
,
S. G.
Louie
, and
M. L.
Cohen
,
Nature (London)
391
,
466
(
1998
).
30.
M. J.
O’Connell
,
S.
Sivaram
, and
S. K.
Doorn
,
Phys. Rev. B
69
,
235415
(
2004
).
31.
V. C.
Moore
,
M. S.
Strano
,
E. H.
Haroz
,
R. H.
Hauge
,
R. E.
Smalley
,
J.
Schmidt
, and
Y.
Talmon
,
Nano Lett.
3
,
1379
(
2003
).
32.
V.
Perebeinos
,
J.
Tersoff
, and
P.
Avouris
,
Phys. Rev. Lett.
92
,
257402
(
2004
).
33.
M. J.
O’Connell
,
E. E.
Eibergen
, and
S. K.
Doorn
,
Nat. Mater.
4
,
412
(
2005
).
You do not currently have access to this content.