We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: <3μm) as well as for focusing a laser beam (laser spot size: 10μm). Even for a broad range of cantilevers with lengths from 35to125μm, the sensor provides deflection noise densities of less than 11fmHz in air and 16fmHz in water. In particular, a cantilever with a length of 50μm gives the minimum deflection noise density of 5.7fmHz in air and 7.3fmHz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water.

1.
T. R.
Albrecht
,
P.
Grütter
,
D.
Horne
, and
D.
Ruger
,
J. Appl. Phys.
69
,
668
(
1991
).
2.
F. J.
Giessibl
,
Science
267
,
68
(
1995
).
3.
S.
Kitamura
and
M.
Iwatsuki
,
Jpn. J. Appl. Phys., Part 2
34
,
L1086
(
1995
).
4.
S. P.
Jarvis
,
T.
Uchihashi
,
T.
Ishida
,
H.
Tokumoto
, and
Y.
Nakayama
,
J. Phys. Chem. B
104
,
6091
(
2000
).
5.
S. P.
Jarvis
,
T.
Ishida
,
T.
Uchihashi
,
Y.
Nakayama
, and
H.
Tokumoto
,
Appl. Phys. A: Mater. Sci. Process.
72
,
S129
(
2001
).
6.
T.
Fukuma
,
T.
Ichii
,
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
,
Appl. Phys. Lett.
86
,
034103
(
2005
).
7.
T.
Fukuma
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
,
Appl. Phys. Lett.
86
,
193108
(
2005
).
8.
T.
Fukuma
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
,
Appl. Phys. Lett.
87
,
034101
(
2005
).
9.
T.
Fukuma
,
M.
Kimura
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
,
Rev. Sci. Instrum.
76
,
053704
(
2005
).
10.
Noncontact Atomic Force Microscopy (Nanoscience and Technology)
, edited by
S.
Morita
,
R.
Wiesendanger
, and
E.
Meyer
(
Springer-Verlag
,
New York
,
2002
).
11.
F. J.
Giessibl
,
H.
Bielefeldt
,
S.
Hembacher
, and
J.
Mannhart
,
Appl. Surf. Sci.
140
,
352
(
1999
).
12.
F. J.
Giessibl
,
Appl. Phys. Lett.
76
,
1470
(
2000
).
13.
F. J.
Giessibl
,
S.
Hembacher
,
H.
Bielefeldt
, and
J.
Mannhart
,
Science
289
,
422
(
2000
).
14.
G. T.
Paloczi
,
B. L.
Smith
,
P. K.
Hansma
, and
D. A.
Walters
,
Appl. Phys. Lett.
73
,
1658
(
1998
).
15.
S.
Hosaka
,
K.
Etoh
,
A.
Kikukawa
, and
H.
Koyanagi
,
J. Vac. Sci. Technol. B
18
,
94
(
1999
).
16.
T.
Ando
,
N.
Kodera
,
E.
Takai
,
D.
Maruyama
,
K.
Saito
, and
A.
Toda
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
12468
(
2001
).
17.
H.
Kawakatsu
,
S.
Kawai
,
D.
Saya
,
M.
Nagashio
,
D.
Kobayashi
, and
H.
Toshiyoshi
,
Rev. Sci. Instrum.
73
,
2317
(
2002
).
18.
T.
Fukuma
,
K.
Kimura
,
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
,
Appl. Phys. Lett.
85
,
6287
(
2004
).
19.
B. W.
Hoogenboom
 et al,
Appl. Phys. Lett.
86
,
074101
(
2005
).
20.
Y.
Martin
,
C. C.
Williams
, and
H. K.
Wickramasinghe
,
J. Appl. Phys.
61
,
4723
(
1987
).
21.
D.
Sarid
,
Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces
(
Oxford University Press
,
New York
,
1994
).
22.
R.
Proksch
,
T. E.
Schäffer
,
J. P.
Cleveland
,
R. C.
Callahan
, and
M. B.
Viani
,
Nanotechnology
15
,
1344
(
2004
).
You do not currently have access to this content.