Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν=95300GHz and this requires magnetic fields of 3.410.7T for electronic spins with g2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppmh over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.

1.
Very High Frequency (VHF) ESR/EPR
,
Biological Magnetic Resonance
Vol.
22
, edited by
O.
Grinberg
and
L. J.
Berliner
(
Kluwer Academic/Plenum
,
New York
,
2004
).
2.
J. A.
Weil
,
J. R.
Bolton
, and
J. E.
Wertz
,
Electron Paramagnetic Resonance: Elementary Theory and Practical Applications
(
Wiley
,
New York
,
1994
), p.
568
.
3.
D. P.
Goldberg
,
J.
Telser
,
J.
Krzystek
,
A. G.
Montalban
,
L.-C.
Brunel
,
A. G. M.
Barrett
, and
B. M.
Hoffman
,
J. Am. Chem. Soc.
119
,
8722
(
1997
).
4.
N. S.
Dalal
,
A. I.
Smirnov
,
T. I.
Smirnova
,
R. L.
Belford
,
A. R.
Katritzky
, and
S. A.
Belyakov
,
J. Phys. Chem.
101
,
11249
(
1997
).
5.
K. A.
Earle
and
A. I.
Smirnov
,
Very High Frequency (VHF) ESR/EPR
,
Biological Magnetic Resonance
Vol.
22
(
Kluwer Academic/Plenum
,
New York
,
2004
), Chap. 4, p.
96
.
6.
S.
Un
,
J.
Bryant
, and
R. G.
Griffin
,
J. Magn. Reson., Ser. A
101
,
92
(
1993
).
7.
L. R.
Becerra
 et al.,
J. Magn. Reson., Ser. A
117
,
28
(
1995
).
8.
M. J.
Nilges
,
A. I.
Smirnov
,
R. B.
Clarkson
, and
R. L.
Belford
,
Appl. Magn. Reson.
16
,
67
(
1999
).
9.
J. T.
Cardin
,
S. V.
Kolaczkowski
,
J. R.
Anderson
, and
D. E.
Budil
,
Appl. Magn. Reson.
16
,
273
(
1999
).
10.
A. F.
Gulla
,
P.
Feenan
,
S.
Burgess
, and
D. E.
Budil
,
Concepts Magn. Reson.
15
,
201
(
2002
).
11.
P.
Hofer
,
A.
Kamlowski
,
G. G.
Maresch
,
D.
Schmalbein
, and
R. T.
Weber
,
Very High Frequency (VHF) ESR/EPR
,
Biological Magnetic Resonance
Vol.
22
(
Kluwer Academic/Plenum
,
New York
,
2004
), Chap. 12, p.
401
.
12.
K.
Watanabe
and
S.
Awaji
,
J. Low Temp. Phys.
133
,
17
(
2003
).
13.
O.
Kirichek
,
P.
Carr
,
C.
Johnson
, and
M.
Atrey
,
Rev. Sci. Instrum.
76
,
055104
(
2005
).
14.
T.
Tomaru
,
T.
Suzuki
,
T.
Haruyama
,
T.
Shintomi
,
A.
Yamamoto
,
T.
Koyama
, and
R.
Li
,
Cryogenics
44
,
309
(
2004
).
15.
J. P.
Barnes
and
J. H.
Freed
,
Rev. Sci. Instrum.
68
,
2838
(
1997
).
16.
J.
van Tol
,
L.-C.
Brunel
, and
R. J.
Wylde
,
Rev. Sci. Instrum.
76
,
074101
(
2005
).
You do not currently have access to this content.