We present a system of room-temperature extended-cavity grating-diode lasers for production of light in the range of 760790nm. The extension of the tuning range towards the blue is permitted by the weak feedback in the cavity: the diodes are antireflection coated, and the grating has just 10% reflectance. The light is then amplified using semiconductor tapered amplifiers to give more than 400mW of power. The outputs are shown to be suitable for atomic-physics experiments with potassium (767nm), rubidium (780nm), or both, of particular relevance to doubly degenerate boson-fermion mixtures.

1.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
and
E. A.
Cornell
,
Science
269
,
198
(
1995
);
[PubMed]
C. C.
Bradley
,
C. A.
Sackett
,
J. J.
Tollett
, and
R. G.
Hulet
,
Phys. Rev. Lett.
75
,
1687
(
1995
);
[PubMed]
K. B.
Davis
,
M. O.
-
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Drufee
,
D. M.
Kurn
, and
W.
Ketterle
,
Phys. Rev. Lett.
75
,
3969
(
1995
).
[PubMed]
2.
C. D.
Wallace
,
T. P.
Dinneen
,
K. Y.N.
-
Tan
,
T. T.
Grove
, and
P. L.
Gould
,
Phys. Rev. Lett.
69
897
(
1992
).
3.
M. S.
Santos
,
P.
Nussenzveig
,
L. G.
Marcassa
,
K.
Helmerson
,
J.
Flemming
,
S. C.
Zilio
, and
V. S.
Bagnato
,
Phys. Rev. A
52
R4340
(E) (
1995
);
[PubMed]
M. S.
Santos
 et al,
Phys. Rev. A
54
,
1739
(E) (
1996
).
[PubMed]
4.
J.
Shaffer
and
N. P.
Bigelow
,
Opt. Photonics News
6
,
47
(
1995
).
5.
F.
Cataliotti
,
E. A.
Cornell
,
C.
Fort
,
M.
Inguscio
,
F.
Marin
,
M.
Prevedelli
,
L.
Ricci
, and
G. M.
Tino
,
Phys. Rev. A
57
,
1136
(
1998
).
6.
M.
Prevedelli
,
F. S.
Cataliotti
,
E. A.
Cornell
,
J. R.
Ensher
,
C.
Fort
,
L.
Ricci
,
G. M.
Tino
, and
M.
Inguscio
,
Phys. Rev. A
59
,
886
(
1999
).
7.
B.
DeMarco
and
D. S.
Jin
,
Science
285
,
1703
(
1999
).
8.
R. S.
Williamson
 III
and
T.
Walker
,
J. Opt. Soc. Am. B
12
,
1393
(
1995
).
9.
B.
de Marco
, Thesis,
University of Colorado
,
2001
.
10.
C. S.
Fletcher
and
J. D.
Close
,
Appl. Phys. B: Lasers Opt.
78
,
305
(
2004
).
11.
C. E.
Wieman
and
L.
Hollberg
,
Rev. Sci. Instrum.
62
,
1
(
1991
).
12.
A. S.
Arnold
,
J. S.
Wilson
, and
M. G.
Boshier
,
Rev. Sci. Instrum.
69
,
1236
(
1998
).
13.
D.
Cassetari
,
E.
Arimondo
, and
P.
Verkerk
,
Opt. Lett.
23
,
1135
(
1998
).
14.
M. G.
Littmann
and
H. J.
Metcalf
,
Appl. Opt.
17
,
2224
(
1978
).
15.
A.
Banerjee
and
V.
Natarajan
,
Phys. Rev. A
70
,
052505
(
2005
).
16.
I.
Shvarchuck
,
K.
Dieckmann
,
M.
Zielonkowski
, and
J. T.M.
Walraven
,
Appl. Phys. B: Lasers Opt.
71
,
475
(
2000
).
17.
D.
Voigt
,
E. C.
Scilder
,
R. J. C.
Spreeuw
, and
H. B.
van Linden van den Heuvell
,
Appl. Phys. B: Lasers Opt.
72
,
279
(
2001
).
18.
J.
Goldwin
,
S. B.
Papp
,
B.
DeMarco
, and
D. S.
Jin
,
Phys. Rev. A
65
,
021402
(R) (
2002
).
19.
Very low power commercial ECDLs are available at 767nm (New Focus Vortex series, using a modified Littmann-Metcalf configuration), but they need to be amplified using two stages: an injection-locked slave diode, then a tapered amplifier.
S.
Aubin
 et al,
J. Low Temp. Phys.
140
,
377
(
2005
).
20.
J.
Catani
,
P.
Maioli
,
L.
De Sarlo
,
F.
Minardi
, and
M.
Inguscio
, e-print cond-mat/ 0511113.
21.
C.
Aussibal
, PhD Thesis,
Université de Paris Sud XI
,
2003
.
22.
J.
Sacher
,
D.
Baums
,
P.
Panknin
,
W.
Elsässer
, and
E. O.
Göbel
,
Phys. Rev. A
45
,
1893
(
1992
).
23.
W. W.
Chow
,
S.
Koch
, and
M.
Sargent
 III
,
Semiconductor-Laser Physics
(
Springer
,
Berlin
,
1994
).
24.
L.
Hildebrandt
,
R.
Knispel
,
S.
Stry
,
J. R.
Sacher
, and
F.
Schael
,
Appl. Opt.
42
,
2110
(
2003
).
25.
See, for example,
A. L.
Schawlow
,
Rev. Mod. Phys.
54
,
697
(
1982
).
26.
Y.
le Coq
, PhD Thesis,
Université de Paris Sud XI
,
2002
, p.
39
.
27.
A. L.
Schawlow
and
C. H.
Townes
,
Phys. Rev.
112
,
1940
(
1958
).
28.
C. H.
Henry
,
IEEE J. Quantum Electron.
QE-18
259
(
1982
).
29.
G.
Ferrari
,
M. O.
-
Mewes
,
F.
Schreck
, and
C.
Salomon
,
Opt. Lett.
24
,
151
(
1999
).
30.

Technical drawings are available on our website: http://atomoptic.iota.u-psud.fr/research/KRub/KRub.html#publications.

31.

Tapered-amplifier chips are rapidly becoming more powerful. We have recently injected 3mW of light and achieved output of 600mW (23dB amplification) at 780nm. With the same chip we also managed fiber-coupling efficiency of 70%, i.e., more than 400mW out of a monomode, polarization-maintaining fiber.

You do not currently have access to this content.