A low energy electron diffraction (LEED) instrument incorporating a delay line detector has been constructed to rapidly collect high-quality digital LEED images with low total electron exposures. The system uses a position-sensitive pulse-counting detector with high bias current microchannel plates. This delay-line detector combined with a femtoampere electron gun offers a wide range of flexibility, with electron dosing currents ranging from 0.15pAto0.3fA. Using the highest current setting and collecting 1×106 counts per image, individual LEED images can be completed in 4s with an acquisition rate of 250kHz and a total electron exposure of 5×106 electrons. Under the latter conditions, images can be collected in 20min with an acquisition rate of 1kHz with a total electron exposure of 2×106 electrons. An angular width of 0.13° at 108eV is demonstrated, which means that domain sizes as large as 600Å can be resolved, depending on the surface quality of the crystal. The system electronics collect 2048×2048pixel images with a spatial resolution of about 75μm. The dynamic range of this system is 32bitspixel (limited only by physical memory). The construction of the detector results in a “plus”-shaped artifact, which requires that, for a given sample orientation, two images be taken at a relative angle of 45°. Identical current-voltage curves from an MgO(111)1×1H terminated sample, taken during several hours of exposure to the low current electron beam, demonstrate minimal electron induced H desorption.

1.
2.
M.
Henzler
,
Surf. Rev. Lett.
4
,
489
(
1997
).
3.
M. G.
Legally
and
J. A.
Martin
,
Rev. Sci. Instrum.
54
,
1273
(
1983
).
4.
P. C.
Stair
,
Rev. Sci. Instrum.
51
,
132
(
1980
).
5.
C.
Martin
,
P.
Jelinsky
,
M.
Lampton
, and
R. F.
Malina
,
Rev. Sci. Instrum.
52
,
1067
(
1981
).
6.
E. G.
McRae
,
R. A.
Malic
, and
D. A.
Kapilow
,
Rev. Sci. Instrum.
5
,
2077
(
1985
).
7.
D. F.
Ogletree
,
G. S.
Blackman
,
R. Q.
Hwang
,
U.
Starke
, and
G. A.
Somorjai
,
Rev. Sci. Instrum.
63
,
104
(
1992
).
8.
F. K.
Men
,
B. L.
Clothier
, and
J. L.
Erskine
,
Rev. Sci. Instrum.
64
,
1883
(
1993
).
10.

Available from Burle Electro-Optics, Sturbridge, Mass., USA.

11.
G. W.
Fraser
,
X-Ray Detectors in Astronomy
(
Cambridge University Press
,
Cambridge, U.K.
,
1989
).
12.
S. E.
Sobottka
and
M. B.
Williams
,
IEEE Trans. Nucl. Sci.
35
,
348
(
1988
).
13.
O.
Jagutzki
,
V.
Mergel
,
K.
Ullman-Pfleger
,
L.
Spielberger
,
U.
Spillmann
,
R.
Dorner
, and
H.
Schmidt-Böcker
,
Nucl. Instrum. Methods Phys. Res. A
477
,
244
(
2002
).
14.

If the timing of the particles with respect to an external trigger signal is of interest Tx can used as a third (time) coordinate. In this case the trigger signal is used as the common start signal.

15.
V. K.
Lazarov
,
R.
Plass
,
H.-C.
Poon
,
D. K.
Saldin
,
M.
Weinert
,
S. A.
Chambers
, and
M.
Gajdardziska-Josifovska
,
Phys. Rev. B
71
,
115434
(
2005
).
17.
G.-C.
Wang
and
M. G.
Lagally
,
Surf. Sci.
81
,
69
(
1979
).
18.
J. B.
Pendry
,
Low Energy Electron Diffraction
(
Academic
,
London
,
1974
).
19.
R. L.
Park
,
J. E.
Houston
, and
D. G.
Schreiner
,
Rev. Sci. Instrum.
42
,
60
(
1971
).
You do not currently have access to this content.