A high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) has been applied to the Thomson scattering system in the JT-60U tokamak for the first time in order to improve the measurement performance. A SBS-PCM realized a high reflectivity of 95% at a high input power of 145W (2.9J, 50Hz). Using the SBS-PCM, two methods have been developed to increase the intensity of scattered light. For the first method, we have developed a new optical design to provide a double-pass scattering method with the SBS-PCM. A laser beam passing through the plasma is reflected by the SBS-PCM. The reflected beam passes the plasma again along the same path by means of the phase conjugation of the optically nonlinear stimulated Brillouin scattering process. The double-pass Thomson scattering method using the SBS-PCM has demonstrated an increase of the scattered light by a factor of 1.6 compared with the single-pass scattering method in JT-60U. A multipass Thomson scattering method in which the laser beam can be confined between a couple of SBS-PCMs is also proposed. It is estimated that the multipass scattering method generates the scattered light more than several times as large as that of the single-pass scattering method. For the second method, a high-average-power yttrium aluminum garnet (Nd:YAG) laser system has been developed using the SBS-PCM. The SBS-PCM effectively compensated thermal degradation at two amplifier lines, and the average power was increased by a factor of >8 from 45W (1.5J, 30Hz) to 373W (7.46J, 50Hz). A Nd:YAG laser (5J, 100Hz) for the edge Thomson scattering in International Thermonuclear Experimental Reactor (ITER) has been designed based on the result.

1.
J.
Sheffield
,
Plasma Scattering of Electromagnetic Radiation
(
Academic
,
New York
,
1975
), pp.
191
210
.
2.
Y.
Koide
 et al.,
Plasma Phys. Controlled Fusion
26
,
A195
(
1994
).
3.
B. Ya.
Zel’dovich
,
V. I.
Popovichev
,
V. V.
Rangulsky
, and
F. S.
Faizullov
,
Sov. Phys. JETP
15
,
109
(
1972
).
4.
B. Ya.
Zel’dovich
N. F.
Pilipetsky
, and
V. V.
Shkunov
,
Principles of Phase Conjugation
(
Springer
,
Berlin
,
1985
), pp.
1
65
.
5.
D. A.
Rockwell
,
IEEE J. Quantum Electron.
24
,
1124
(
1988
).
6.
H.
Yoshida
,
V.
Kmetik
,
H.
Fujita
,
M.
Nakatsuka
,
T.
Yamanaka
, and
K.
Yoshida
,
Appl. Opt.
36
,
3739
(
1997
).
7.
H.
Yoshida
,
H.
Fujita
,
M.
Nakatsuka
, and
K.
Yoshida
,
Opt. Eng. (Bellingham)
36
,
2557
(
1997
).
8.
H.
Yoshida
,
H.
Fujita
,
M.
Nakatsuka
, and
K.
Yoshida
,
Jpn. J. Appl. Phys., Part 2
38
,
L521
(
1999
).
9.
J.-P.
Huignard
,
Phase Conjugate Laser Optics
, edited by
A.
Brignon
(
Wiley
,
Hoboken, NJ
,
2004
), pp.
43
57
and
205
221
.
10.
T.
Hatae
,
M.
Nakatsuka
, and
H.
Yoshida
,
J. Plasma Fusion Res.
80
,
870
(
2004
).
11.
T.
Hatae
 et al.,
Rev. Sci. Instrum.
70
,
772
(
1999
).
12.
H.
Yoshida
,
M.
Nakatsuka
,
T.
Hatae
,
S.
Kitamura
, and
T.
Kashiwabara
,
Jpn. J. Appl. Phys., Part 1
42
,
439
(
2003
).
13.
H.
Yoshida
,
M.
Nakatsuka
,
T.
Hatae
,
S.
Kitamura
,
T.
Sakuma
, and
T.
Hamano
,
Jpn. J. Appl. Phys., Part 2
43
,
L1038
(
2004
).
14.
P.
Nielsen
,
Proceedings of the Tenth International Symposium on Laser-Aided Plasma Diagnostics
,
Fukuoka
, Japan, 24–28 September
2001
, p.
401
.
15.
A.
Ikesue
,
K.
Kamata
, and
K.
Yoshida
,
J. Am. Ceram. Soc.
78
,
2545
(
1995
).
16.
O. R. P.
Smith
,
C.
Gowers
,
P.
Nielsen
, and
H.
Salzmann
,
Rev. Sci. Instrum.
68
,
725
(
1997
).
17.
M. Yu.
Kantor
, and
D. V.
Kouprienko
,
Rev. Sci. Instrum.
70
,
780
(
1999
).
18.
M. Yu.
Kantor
,
C. J.
Barth
,
D. V.
Kouprienko
, and
H. J.
van der Meiden
,
Rev. Sci. Instrum.
72
,
1159
(
2001
).
19.
H. J.
van der Meiden
 et al.,
Rev. Sci. Instrum.
75
,
3849
(
2004
).
20.
H. J.
van der Meiden
 et al., Rev. Sci. Instrum., these proceedings.
You do not currently have access to this content.