This article describes a versatile instrument capable of probing magnetic domain-wall dynamics in microstructured thin films. The instrument combines a state-of-the-art scanning magneto-optic Kerr effect polarimeter that incorporates high-bandwidth signal detection, an integrated broadband magnet system, and a microwave probe station. Together, these subsystems enable a broad range of studies of field and current-driven domain-wall dynamics in submicrometer magnetic structures and devices. Domain-wall motion can be probed with 2μm spatial resolution and less than 2ns temporal resolution. That motion can be driven by magnetic fields of up to 100Oe amplitude with sinusoidal (>20MHz) or user-defined wave forms (20ns rise time) or by electric currents from dc to 10GHz. A detailed description of the instrument is provided as well as several experiments highlighting its capabilities, including hysteresis loop shape and magnetic energy loss measurements spanning ten decades of drive frequency; spatially and temporally resolved measurements of domain-wall propagation in submicrometer magnetic wires; and mobility measurements of field- and current-driven domain-wall motion.

1.
Ultrathin Magnetic Structures
, edited by
B.
Heinrich
and
J. A. C.
Bland
, (
Springer
,
Berlin
,
1994
).
2.
S. D.
Bader
and
J. L.
Erskine
,
Ultrathin Magnetic Structures
(Ref. 1), p.
297
.
3.
A.
Hubert
and
R.
Schäfer
,
Magnetic Domains
(
Springer
,
Berlin
,
1998
).
4.
T. J.
Silva
,
C. S.
Lee
,
T. M.
Crawford
, and
C. T.
Rogers
,
J. Appl. Phys.
85
,
7849
(
1999
).
5.
A. B.
Kos
,
T. J.
Silva
, and
P.
Kabos
,
Rev. Sci. Instrum.
73
,
3563
(
2002
).
6.
A. B.
Kos
,
N. R.
Lopusnik
,
T. J.
Silva
, and
Z.
Celinski
,
J. Appl. Phys.
93
,
7068
(
2003
).
7.
A. Y.
Elezzabi
and
M. R.
Freeman
,
Appl. Phys. Lett.
68
,
3546
(
1996
).
8.
W. K.
Hiebert
,
A.
Stankiewicz
, and
M. R.
Freeman
,
Phys. Rev. Lett.
79
,
1134
(
1997
).
9.
G. M.
Sandler
,
H. N.
Bertram
,
T. J.
Silva
, and
T. M.
Crawford
,
J. Appl. Phys.
85
,
5080
(
1999
).
10.
R. J.
Hicken
and
J.
Wu
,
J. Appl. Phys.
85
,
4980
(
1999
).
11.
V. L.
Safonov
and
H. N.
Bertram
,
J. Appl. Phys.
85
,
5072
(
1999
).
12.
B. C.
Choi
,
M.
Belov
,
W. K.
Hiebert
,
G. E.
Ballentine
, and
M. R.
Freeman
,
Phys. Rev. Lett.
86
,
728
(
2001
).
13.
P.
Kabos
,
A. B.
Kos
, and
T. J.
Silva
,
J. Appl. Phys.
87
,
5980
(
2000
).
14.
M. R.
Pufall
and
T. J.
Silva
,
IEEE Trans. Magn.
38
,
129
(
2002
).
15.
M. R.
Freeman
and
B.
Choi
,
Science
294
,
1484
(
2001
).
16.
D. A.
Allwood
,
G.
Xiong
,
M. D.
Cooke
, and
R. P.
Cowburn
,
J. Phys. D
36
,
2175
(
2003
).
17.
S.
Yang
and
J. L.
Erskine
,
Phys. Rev. B
72
,
064433
(
2005
).
18.
L.
Berger
,
J. Appl. Phys.
55
,
1954
(
1984
).
19.
P. P.
Freitas
and
L.
Berger
,
J. Appl. Phys.
57
,
1266
(
1985
).
20.
M.
Kläui
,
C. A.F.
Vaz
,
J. A.C.
Bland
,
W.
Wernsdorfer
,
G.
Faini
,
E.
Cambril
, and
L. J.
Heyderman
,
Appl. Phys. Lett.
83
,
105
(
2003
).
21.
M.
Tsoi
,
R. E.
Fontana
, and
S. S. P.
Parkin
,
Appl. Phys. Lett.
83
,
2617
(
2003
).
22.
G. S. D.
Beach
,
C.
Knutson
,
C.
Nistor
,
M.
Tsoi
, and
J. L.
Erskine
,
Phys. Rev. Lett.
97
,
057203
(
2006
).
23.
I. F.
Lyuksyutov
,
T.
Nattermann
, and
V.
Pokrovsky
,
Phys. Rev. B
59
,
4260
(
1999
).
24.
H. J.
Williams
,
W.
Shockley
, and
C.
Kittel
,
Phys. Rev.
80
,
1090
(
1950
).
25.
C.
Nistor
,
E.
Farraggi
, and
J. L.
Erskine
,
Phys. Rev. B
72
,
014404
(
2005
).
26.
C.
Nistor
and
J. L.
Erskine
(unpublished).
27.
K. J.
Sixtus
and
L.
Tonks
,
Phys. Rev.
37
,
930
(
1931
).
28.
G. S. D.
Beach
,
C.
Nistor
,
C.
Knutson
,
M.
Tsoi
, and
J. L.
Erskine
,
Nat. Mater.
4
,
741
(
2005
).
29.
N. L.
Schryer
and
L. R.
Walker
,
J. Appl. Phys.
45
,
5406
(
1974
).
30.
A. P.
Malozemoff
and
J. C.
Slonczewski
,
Magnetic Domain Walls in Bubble Materials
(
Academic
,
New York
,
1979
).
31.
C.
Tatara
and
H.
Kohno
,
Phys. Rev. Lett.
92
,
086601
(
2004
).
32.
Z.
Li
and
S.
Zhang
,
Phys. Rev. Lett.
93
,
127204
(
2004
).
33.
A.
Thiaville
,
Y.
Nakatani
,
J.
Miltat
, and
Y.
Suzuki
,
Europhys. Lett.
69
,
990
(
2005
).
You do not currently have access to this content.