We explain and demonstrate a new method of force and position calibrations for optical tweezers with back-focal-plane photodetection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use the drag coefficient of the trapped object as an input. Thus, neither the viscosity, nor the size of the trapped object, nor its distance to nearby surfaces needs to be known. The method requires only a low level of instrumentation and can be applied in situ in all spatial dimensions. It is both accurate and precise: true values are returned, with small error bars. We tested this experimentally, near and far from surfaces in the lateral directions. Both position and force calibrations were accurate to within 3%. To calibrate, we moved the sample with a piezoelectric translation stage, but the laser beam could be moved instead, e.g., by acousto-optic deflectors. Near surfaces, this precision requires an improved formula for the hydrodynamical interaction between an infinite plane and a microsphere in nonconstant motion parallel to it. We give such a formula.

1.
K. C.
Neuman
and
S. M.
Block
,
Rev. Sci. Instrum.
75
,
2787
(
2004
).
2.
K.
Berg-Sørensen
and
H.
Flyvbjerg
,
Rev. Sci. Instrum.
75
,
594
(
2004
).
3.
K.
Berg-Sørensen
,
E. J. G.
Peterman
,
T.
Weber
,
C. F.
Schmidt
, and
H.
Flyvbjerg
,
Rev. Sci. Instrum.
77
,
063106
(
2006
).
4.
G. J.
Brouhard
,
H. T.
Schek
 III
, and
A. J.
Hunt
,
IEEE Trans. Biomed. Eng.
50
,
121
(
2003
).
5.
S. C.
Kuo
and
M. P.
Sheetz
,
Science
260
,
232
(
1993
).
6.
R.
Simmons
,
J.
Finer
,
S.
Chu
, and
J.
Spudich
,
Biophys. J.
70
,
1813
(
1996
).
7.

A common approach calibrates far enough above the coverslip surface to ensure that uncertainty about the height does not affect the calibration significantly. This calibration is then used closer to the surface. If an oil-immersion objective is used, this is an error-prone approach: due to the difference in refractive index between oil and water, the trap stiffness decreases rapidly with distance from the surface—10μm from the surface—and the stiffness is typically reduced by more than a factor of 2 for beads with a diameter of 500nm (Refs. 12, 20, 21, and 42). Thus, one detrimental effect is swapped for another, and calibration errors can be large.

8.
S. B.
Smith
,
Y.
Cui
, and
C.
Bustamante
,
Science
271
,
795
(
1996
).
9.
M. J.
Lang
,
C. L.
Asbury
,
J. W.
Shaevitz
, and
S. M.
Block
,
Biophys. J.
83
,
491
(
2002
).
10.
K. C.
Vermeulen
,
J.
van Mameren
,
G. J. M.
Stienen
,
E. J. G.
Peterman
,
G. J. L.
Wuite
, and
C. F.
Schmidt
,
Rev. Sci. Instrum.
77
,
013704
(
2006
).
11.
M.
Capitanio
,
R.
Cicchi
, and
F. S.
Pavone
,
Eur. Phys. J. B
46
,
1
(
2005
).
12.
E.
Schäffer
,
S. F.
Nørrelykke
, and
J.
Howard
(unpublished).
13.
U.
Bockelmann
,
Ph.
Thomen
,
B.
Essevaz-Roulet
,
V.
Viasnoff
, and
F.
Heslot
,
Biophys. J.
82
,
1537
(
2002
).
14.

See Appendix  C for how to square Dirac’s delta-function in Eq. (8).

15.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Noordhoff
,
Leyden
,
1973
).
16.
F. J.
Harris
,
Proc. IEEE
66
,
51
(
1978
).
17.
I. M.
Tolić-Nørrelykke
,
K.
Berg-Sørensen
, and
H.
Flyvbjerg
,
Comput. Phys. Commun.
159
,
225
(
2004
).
18.
P. M.
Hansen
,
I. M.
Tolić-Nørrelykke
,
H.
Flyvbjerg
, and
K.
Berg-Sørensen
,
Comput. Phys. Commun.
174
,
518
(
2006
).
19.
S.
Hell
,
G.
Reiner
,
C.
Cremer
, and
E. H. K.
Stelzer
,
J. Microsc.
169
,
391
(
1993
).
20.
E.-L.
Florin
,
A.
Pralle
,
E. H. K.
Stelzer
, and
J. K. H.
Hörber
,
Appl. Phys. A: Mater. Sci. Process.
66
,
75
(
1998
).
21.
K. C.
Neuman
,
E. A.
Abbondanzieri
, and
S. M.
Block
,
Opt. Lett.
30
,
1318
(
2005
).
22.
E. J. G.
Peterman
,
F.
Gittes
, and
C. F.
Schmidt
,
Biophys. J.
84
,
1308
(
2003
).
23.
W.
Denk
and
W. W.
Webb
,
Appl. Opt.
29
,
2382
(
1990
).
24.
K.
Svoboda
,
C. F.
Schmidt
,
B. J.
Schnapp
, and
S. M.
Block
,
Nature (London)
365
,
721
(
1993
).
25.
A.
Pralle
,
M.
Prummer
,
E. L.
Florin
,
E. H. K.
Stelzer
, and
J. K. H.
Horber
,
Microsc. Res. Tech.
44
,
378
(
1999
).
26.
J.
Howard
and
A. J.
Hudspeth
,
Neuron
1
,
189
(
1988
).
27.
K.
Berg-Sørensen
,
L.
Oddershede
,
E.-L.
Florin
, and
H.
Flyvbjerg
,
J. Appl. Phys.
93
,
3167
(
2003
).
28.
29.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
,
Course of Theoretical Physics
Vol.
6
(
Pergamon
,
Oxford
,
1959
).
30.

Equation (34) in Ref. 2 contains a typographical error: The parameter fm in this equation is fm,0=γ0(2πm), i.e., not the same as the parameter fm, which occurs in Eq. (32) in Ref. 2. Systematic naming is achieved, if the latter is referred to as fm*,0=γ0(2πm*), i.e., only its name is changed, not its definition in terms of m*=m+2πρR33, where ρ is the mass density of the liquid (Ref. 40). This error is not repeated in the programs described in Refs. 17 and 18.

31.
G. G.
Stokes
,
Trans. Cambridge Philos. Soc.
9
,
8
(
1851
).
32.
H.
Faxén
, Ph.D. thesis, Uppsala,
1921
.
33.
M.
O’Neill
,
Mathematika
11
,
67
(
1964
).
34.
A. J.
Goldman
,
R. G.
Cox
, and
H.
Brenner
,
Chem. Eng. Sci.
22
,
637
(
1967
).
35.
Consequently, Eq. (D6)’s expression for γ(f,R) has been introduced in the programs described in Refs. 17 and 18 in the latest versions found in Computer Physics Communication’s program library (Ref. 41).
36.

Note, however, that a function can approximate another function well, even when their derivatives do not approximate each other well. This is the case here: If one considers how Faxén’s result γ(0,R) is approached by γ(f,R) by expanding Eq. (D6) in powers of ffν, the approach is incorrect to first order.

37.
P. M.
Hansen
,
J. K.
Dreyer
,
J.
Ferkinghoff-Borg
, and
L.
Oddershede
,
J. Colloid Interface Sci.
287
,
561
(
2005
).
38.
C.
Deufel
and
M. D.
Wang
,
Biophys. J.
90
,
657
(
2006
).
39.
M. D.
Wang
,
H.
Yin
,
R.
Landick
,
J.
Gelles
, and
S. M.
Block
,
Biophys. J.
72
,
1335
(
1997
).
40.
K.
Berg-Sørensen
and
H.
Flyvbjerg
,
Rev. Sci. Instrum.
(to be published).
41.
K.
Berg-Sørensen
and
H.
Flyvbjerg
(private communication).
42.
K. C.
Vermeulen
,
G. J. L.
Wuite
,
G. J. M.
Stienen
, and
C. F.
Schmidt
,
Appl. Opt.
45
,
1812
(
2006
).
43.
H.
Flyvbjerg
, Winter Workshop on Biophysics, Aspen, CO, 2–8 January 2005 (unpublished).
You do not currently have access to this content.