We report the concept and development of a Ka-band mode and polarization converter that efficiently converts a TE10 rectangular waveguide mode into either a linearly or a circularly polarized TE21 cylindrical waveguide mode. The converter is composed of a power-dividing section, a mode-converting section, and a polarization-transitioning section. The converting process in each section is displayed and the working principles are discussed. A prototype has been built and tested. The measured results agree well with the numerical calculations for both linear and circular polarizations. The measured optimum back-to-back transmission is 94% with a 1-dB bandwidth of 4.1 GHz for the linear polarization. As for the circular polarization, the measured optimum transmission is 97%, but the corresponding bandwidth is indistinct due to some resonant dips. The reasons and impact for the dips are discussed. A bandwidth of 3.9 GHz is obtained for a single circular converter; meanwhile, an approach to eliminating these unwanted dips is presented in theory. For further diagnostics, the field pattern of either polarization is directly displayed on a temperature-sensitive liquid crystal display sheet, where the electric field strength can be discerned from the color spectrum. In addition to high conversion efficiency and broad bandwidth, this converter features easy construction, high mode purity, and polarization controllability.

1.
Q. S.
Wang
,
D. B.
McDermott
, and
N. C.
Luhmann
, Jr.
,
IEEE Trans. Plasma Sci.
24
,
700
(
1996
).
2.
Q. S.
Wang
,
D. B.
McDermott
, and
N. C.
Luhmann
, Jr.
,
Phys. Rev. Lett.
75
,
4322
(
1995
).
3.
S. J.
Cooke
,
A. W.
Cross
,
W.
He
, and
A. D.R.
Phelps
,
Phys. Rev. Lett.
77
,
4836
(
1996
).
4.
V. L.
Bratman
,
A. E.
Fedotov
,
Y. K.
Kalynov
,
V. N.
Manuilov
,
M. M.
Ofitserov
,
S. V.
Samsonov
, and
A. V.
Savilov
,
IEEE Trans. Plasma Sci.
27
,
456
(
1999
).
5.
H. B.
Harriet
,
D. B.
McDermott
,
D. A.
Gallagher
, and
N. C.
Luhmann
, Jr.
,
IEEE Trans. Plasma Sci.
30
,
909
(
2002
).
6.
Y. S.
Yeh
,
T. H.
Chang
, and
T. S.
Wu
,
Phys. Plasmas
11
,
4547
(
2004
).
7.
W.
Lawson
,
M. R.
Arjona
,
B. P.
Hogan
, and
R. L.
Ives
,
IEEE Trans. Microwave Theory Tech.
48
,
809
(
2000
).
8.
M. A.
Lieberman
and
R. A.
Gottscho
,
Physics of Thin Film
, edited by
M. H.
Francome
and
J. L.
Vossen
(
Academic
, New York,
1994
), pp.
25
40
.
9.
J. E.
Stevens
,
J. L.
Cecchi
,
Y. C.
Huang
, and
R. L.
Jarecki
,
J. Vac. Sci. Technol. A
9
,
696
(
1991
).
10.
O. A.
Popov
,
J. Vac. Sci. Technol. A
8
,
2909
(
1990
).
11.
S.
Samukawa
,
J. Vac. Sci. Technol. A
11
,
2572
(
1993
).
12.
A.
Vegas
,
M. A.G.
Calderon
, and
E. G.
Bustamante
,
Plasma Phys. Controlled Fusion
,
26
,
1579
(
1984
).
13.
V. Y.
Lo
, TDA Progress Report,
1996
, Vol.
42
,
104
.
14.
Y. H.
Choung
,
K. R.
Goudey
, and
L. G.
Bryans
,
IEEE Trans. Microwave Theory Tech.
30
,
1862
(
1982
).
15.
D. B.
McDermott
,
J.
Petterebner
,
C. K.
Chong
,
C. F.
Kinney
,
M. M.
Razeghi
, and
N. C.
Luhmann
, Jr.,
IEEE Trans. Microwave Theory Tech.
44
,
311
(
1996
),
16.
P. J.
Clarricoats
and
A. D.
Olver
,
Corrugated Horns for Microwave Antennas
(
Peter Peregrinus
, London,
1984
).
17.
F.
Sporleder
and
H. G.
Unger
,
Waveguide Tapers Transitions and Couplers
(
Peter Peregrinus
, New York,
1979
), Chap. 8.
18.
T. H.
Chang
,
L. R.
Barnett
,
K. R.
Chu
,
F.
Tai
, and
C. L.
Hsu
,
Rev. Sci. Instrum.
70
,
1530
(
1999
).
You do not currently have access to this content.