We present a broadband microwave spectrometer covering the range from 45 MHz up to 20 GHz (in some cases up to 40 GHz) which employs the Corbino geometry, meaning that the flat sample terminates the end of a coaxial transmission line. This setup is optimized for low-temperature performance (temperature range 1.7–300 K) and for the study of highly conductive samples. The actual sensitivity in reflection coefficient can be as low as 0.001, leading to a resolution of 10% in absolute values of the impedance or complex conductivity. For optimum accuracy a full low-temperature calibration is necessary; therefore up to three calibration measurements (open, short, and load) are performed at the same temperature as the sample measurement. This procedure requires excellent reproducibility of the cryogenic conditions. We compare further calibration schemes based on just a single low-temperature calibration measurement or employing a superconducting sample as a calibration standard for its normal state, and we document the capability of the instrument with test measurements on metallic thin films. Finally we apply the spectrometer to thin films of a heavy-fermion compound as an example for a strongly correlated electron system.

1.
M.
Dressel
and
G.
Grüner
,
Electrodynamics of Solids: Optical Properties of Electrons in Matter
(
Cambridge University Press
, Cambridge,
2002
).
2.
M.
Dressel
,
N.
Kasper
,
K.
Petukhov
,
B.
Gorshunov
,
G.
Grüner
,
M.
Huth
, and
H.
Adrian
,
Phys. Rev. Lett.
88
,
186404
(
2002
).
3.
M.
Dressel
,
N.
Kasper
,
K.
Petukhov
,
D. N.
Peligrad
,
B.
Gorshunov
,
M.
Jourdan
,
M.
Huth
, and
H.
Adrian
,
Phys. Rev. B
66
,
035110
(
2002
).
4.
P.
Tran
,
S.
Donovan
, and
G.
Grüner
,
Phys. Rev. B
65
,
205102
(
2002
).
5.
B.
Gorshunov
,
N.
Sluchanko
,
A.
Volkov
,
M.
Dressel
,
G.
Knebel
,
A.
Loidl
, and
S.
Kunii
,
Phys. Rev. B
59
,
1808
(
1999
).
6.
H.-L.
Lee
,
J. P.
Carini
, and
D. V.
Baxter
,
Phys. Rev. Lett.
80
,
4261
(
1998
).
7.
R. J.
Deri
and
T. G.
Castner
,
Phys. Rev. Lett.
57
,
134
(
1986
).
8.
M.
Lee
and
M. L.
Stutzmann
,
Phys. Rev. Lett.
87
,
056402
(
2001
).
9.
M.
Dressel
,
A.
Schwartz
,
G.
Grüner
, and
L.
Degiorgi
,
Phys. Rev. Lett.
77
,
398
(
1996
).
10.
A.
Schwartz
,
M.
Dressel
,
G.
Grüner
,
V.
Vescoli
,
L.
Degiorgi
, and
T.
Giamarchi
,
Phys. Rev. B
58
,
1261
(
1998
).
11.
F. P.
Mena
,
D.
van der Marel
,
A.
Damascelli
,
M.
Fäth
,
A. A.
Menovsky
, and
J. A.
Mydosh
,
Phys. Rev. B
67
,
241101
(R) (
2003
).
12.
F.
Hohls
,
U.
Zeitler
, and
R. J.
Haug
,
Phys. Rev. Lett.
86
,
5124
(
2001
).
13.
F.
Hohls
,
U.
Zeitler
,
R. J.
Haug
,
R.
Meisels
,
K.
Dybko
, and
F.
Kuchar
,
Phys. Rev. Lett.
89
,
276801
(
2002
).
14.
Y.
Chen
,
R. M.
Lewis
,
L. W.
Engel
,
D. C.
Tsui
,
P. D.
Ye
,
L. N.
Pfeiffer
, and
K. W.
West
,
Phys. Rev. Lett.
91
,
016801
(
2003
).
15.
J.
van Slageren
,
S.
Vongtragool
,
B.
Gorshunov
,
A. A.
Mukhin
,
N
Karl
,
J.
Krzystek
,
J
Telser
,
A.
Mller
,
C.
Sangregorio
,
D.
Gatteschi
, and
M.
Dressel
,
Phys. Chem. Chem. Phys.
5
,
3837
(
2003
).
16.
O.
Klein
,
S.
Donovan
,
M.
Dressel
, and
G.
Grüner
,
Int. J. Infrared Millim. Waves
14
,
2423
(
1993
);
S.
Donovan
,
O.
Klein
,
M.
Dressel
,
K.
Holczer
, and
G.
Grüner
,
Int. J. Infrared Millim. Waves
14
,
2459
(
1993
);
M.
Dressel
,
O.
Klein
,
S.
Donovan
, and
G.
Grüner
,
Int. J. Infrared Millim. Waves
14
,
2489
(
1993
);
M.
Dressel
,
O.
Klein
,
S.
Donovan
, and
G.
Grüner
,
Ferroelectrics
176
,
285
(
1996
);
H. W.
Helberg
and
M.
Dressel
,
J. Phys. I
6
,
1683
(
1996
).
17.
M.
Mola
,
S.
Hill
,
P.
Goy
, and
M.
Gross
,
Rev. Sci. Instrum.
71
,
186
(
2000
).
18.
W. N.
Hardy
and
L. A.
Whitehead
,
Rev. Sci. Instrum.
52
,
213
(
1981
).
19.
D. A.
Bonn
,
D. C.
Morgan
, and
W. N.
Hardy
,
Rev. Sci. Instrum.
62
,
1819
(
1991
).
20.
A.
Hosseini
,
R.
Harris
,
Saeid
Kamal
,
P.
Dosanjh
,
J.
Preston
,
Ruixing
Liang
,
W. N.
Hardy
, and
D. A.
Bonn
,
Phys. Rev. B
60
,
1349
(
1999
).
21.
R. J.
Deri
,
Rev. Sci. Instrum.
57
,
82
(
1986
).
22.
M. S.
DiIorio
,
A. C.
Anderson
, and
B.-Y.
Tsaur
,
Phys. Rev. B
38
,
7019
(
1988
).
23.
D. E.
Oates
,
A. C.
Anderson
, and
P. M.
Mankiewich
,
J. Supercond.
3
,
251
(
1990
).
24.
N.
Belk
,
D. E.
Oates
,
D. A.
Feld
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
53
,
3459
(
1996
).
25.
O. M.
Corbino
,
Nuovo Cimento
1
,
397
(
1911
).
26.
J. C.
Booth
,
D. H.
Wu
, and
S. M.
Anlage
,
Rev. Sci. Instrum.
65
,
2082
(
1994
).
27.
D. H.
Wu
,
J. C.
Booth
, and
S. M.
Anlage
,
Phys. Rev. Lett.
75
,
525
(
1995
).
28.
J. C.
Booth
,
D. H.
Wu
,
S. B.
Qadri
,
E. F.
Skelton
,
M. S.
Osofsky
,
A.
Piqué
, and
S. M.
Anlage
,
Phys. Rev. Lett.
77
,
4438
(
1996
).
29.
A.
Schwartz
,
M.
Scheffler
, and
S. M.
Anlage
,
Phys. Rev. B
61
,
R870
(
2000
).
30.
A.
Schwartz
,
M.
Scheffler
, and
S. M.
Anlage
, cond-mat/0010172 (
2000
).
31.
M. L.
Stutzman
,
M.
Lee
, and
R. F.
Bradley
,
Rev. Sci. Instrum.
71
,
4596
(
2000
).
32.
P. J.
Turner
 et al,
Rev. Sci. Instrum.
75
,
124
(
2004
).
33.
P. J.
Turner
 et al,
Phys. Rev. Lett.
90
,
237005
(
2003
).
34.

Vector network analyzer set HP 85107B by Hewlett-Packard.

35.
D. M.
Pozar
,
Microwave Engineering
(
Wiley
, New York,
1998
).
36.

Type 08 S 121-K00 S3, by Rosenberger Hochfrequentechnik. The female connector was converted to a Corbino probe by removing most of the threading on a lathe. Although the remaining part of the threading can still be used to connect room-temperature calibration standards or the cylindrical housing shown in Fig. 4, it does not interfere when the sample is attached to the mating plane of the connector.

37.

Type UT85-LL-TP, by Micro-Coax.

38.

Model CX-1050-AA, by LakeShore.

39.

Model 340 temperature controller, by LakeShore.

40.
Taschenbuch der Hochfrequenztechnik
, edited by
K.
Lange
and
K.-H.
Löcherer
(
Springer
, Berlin,
1992
).
41.

2.4 mm Calibration Kit HP 85056A, by Hewlett-Packard.

42.

Since the resistance was obtained from the two-lead measurement that is performed simultaneously with respect to the microwave measurements, the measured values contain a resistance contribution due to the cables (approximately 1.5Ω) which is slightly temperature dependent and causes part of the temperature dependence of the resistance plotted in Fig. 6.

43.

Thermal evaporation of commercial NiCr pellets, product number 042468 by Alfa Aesar.

44.

The only standard where we could determine deviations from perfect behavior is the teflon open. From spectra calibrated commercially at room temperature, we can interpret the open standard as a capacitance of 30fF. But the measurements presented here focus on low-resistive samples where the reflection coefficient is very close to the short standard (S11=1), and thus the influence of the open standard (S11=1) is comparably small. We have found no improvement when incorporating the imperfection of the open standard and therefore neglect it. For highly resistive samples on the contrary one clearly has to take this effect into account.

45.
H. C.F.
Martens
,
J. A.
Reedijk
, and
H. B.
Brom
,
Rev. Sci. Instrum.
71
,
473
(
2000
).
46.

Our 28Ω film corresponds to the 40Ω film of Stutzman et al. as their Corbino probe has different diameters.

47.
W.
Buckel
,
Supraleitung
, 5th ed. (
VCH
, Weinheim,
1994
).
48.
W.
Buckel
and
R.
Hilsch
,
Z. Phys.
138
,
109
(
1954
);
R. W.
Cohen
and
B.
Abeles
,
Phys. Rev.
168
,
444
(
1968
);
M.
Strongin
and
O. F.
Kammerer
,
J. Appl. Phys.
39
,
2509
(
1968
);
H.
Sixl
,
J.
Gromer
, and
H. C.
Wolf
,
Z. Naturforsch. A
29A
319
(
1974
).
49.
C.
Geibel
 et al,
Z. Phys. B: Condens. Matter
84
,
1
(
1991
).
50.
M.
Huth
,
A.
Kaldowski
,
J.
Hessert
,
Th.
Steinborn
, and
H.
Adrian
,
Solid State Commun.
87
,
1133
(
1993
).
51.
M.
Jourdan
,
M.
Huth
, and
H.
Adrian
,
Nature (London)
398
,
47
(
1999
).
52.
A. J.
Millis
and
P. A.
Lee
,
Phys. Rev. B
35
,
3394
(
1987
).
53.
The only previous experiments probing the conductivity of heavy fermions around the scattering rate were on UPt3 and employed cavities:
P.
Tran
,
S.
Donovan
, and
G.
Grüner
,
Phys. Rev. B
65
,
205102
(
2002
).
For a review on optical studies on heavy fermions see:
L.
Degiorgi
,
Rev. Mod. Phys.
71
,
687
(
1999
). Meanwhile several other heavy-fermion compounds have been studied using conventional far-infrared spectroscopy, but none could directly reveal the Drude rolloff.
54.

Obviously this only applies to low-temperature measurements. For measurements at room temperature the contact resistance discussed before is the dominant error source.

55.

Between the measurements the sample was removed completely and different contact pads were deposited. Thus part of the differences documented in terms of the standard deviation might stem from differences in the sample and not from the spectrometer. The data shown here therefore act as a worst-case bound for the performance of the calibration procedure employing the superconducting sample.

You do not currently have access to this content.