A new multifrequency quasioptical electron paramagnetic resonance (EPR) spectrometer is described. The superheterodyne design with Schottky diode mixer/detectors enables fast detection with subnanosecond time resolution. Optical access makes it suitable for transient EPR (TR-EPR) at 120 and 240 GHz. These high frequencies allow for an accurate determination of small g-tensor anisotropies as are encountered in excited triplet states of organic molecules like porphyrins and fullerenes. The measured concentration sensitivity for continuous-wave (cw) EPR at 240 GHz and at room temperature without cavity is 1013spinscm3 (15 nM) for a 1 mT linewidth and a 1 Hz bandwidth. With a Fabry-Perot cavity and a sample volume of 30 nl, the sensitivity at 240 GHz corresponds to 3×109 spins for a 1 mT linewidth. The spectrometer’s performance is illustrated with applications of transient EPR of excited triplet states of organic molecules, as well as cw EPR of nitroxide reference systems and a thin film of a colossal magnetoresistance material.

1.
Very High Frequency (VHF) ESR/EPR
, edited by
O.
Grinberg
and
L. J.
Berliner
, Vol.
22
of
Biological Magnetic Resonance
(
Kluwer Academic/Plenum
, New York,
2004
).
2.
Z. C.
Liang
and
J. H.
Freed
,
J. Phys. Chem. B
101
,
6384
(
1999
).
3.
K. A.
Earle
and
A. I.
Smirnov
,
Very High Frequency (VHF) ESR/EPR
, Vol.
22
of
Biological Magnetic Resonance
(
Kluwer Academic/Plenum Publishers
, New York,
2004
), Chap. 4, p.
95144
.
4.
G. A.
Rinard
,
R. W.
Quine
,
J. R.
Harbridge
,
R. T.
Song
,
G. R.
Eaton
, and
S. S.
Eaton
,
J. Magn. Reson.
140
,
218
(
1999
).
5.
D.
Schmalbein
,
G. G.
Maresch
,
A.
Kamlowski
, and
P.
Hofer
,
Appl. Magn. Reson.
16
,
185
(
1999
).
6.
R. T.
Weber
,
J. A.J.M.
Disselhorst
,
L. J.
Prevo
,
J.
Schmidt
, and
W. T.
Wenckebach
,
J. Magn. Reson. (1969-1992)
81
,
129
(
1989
).
7.
O.
Burghaus
,
M.
Rohrer
,
T.
Gotzinger
,
M.
Plato
, and
K.
Mobius
,
Meas. Sci. Technol.
3
,
765
(
1992
).
8.
A. K.
Hassan
,
L. A.
Pardi
,
J.
Krzystek
,
A.
Sienkiewicz
,
P.
Goy
,
M.
Rohrer
, and
L. C.
Brunel
,
J. Magn. Reson.
142
,
300
(
2000
).
9.
K. A.
Earle
,
D. S.
Tipikin
, and
J. H.
Freed
,
Rev. Sci. Instrum.
67
,
2502
(
1996
).
10.
G. M.
Smith
,
J. C.G.
Lesurf
,
R. H.
Mitchell
, and
P. C.
Riedi
,
Rev. Sci. Instrum.
69
,
3924
(
1998
).
11.
A. M.
Portis
and
D. T.
Teaney
,
J. Appl. Phys.
29
,
1692
(
1958
).
12.
G. M.
Smith
and
P. C.
Riedi
,
Progress in High Field EPR
, Vol.
17
of the
Royal Society of Chemistry Specialists Periodical Reports
(RSC, Cambridge, UK,
2000
), p.
164
.
13.
R. J.
Wylde
,
IEE Proc., Part H: Microwaves, Opt. Antennas
131
,
258
(
1984
).
14.
D. H.
Martin
and
E.
Puplett
,
Infrared Phys.
10
,
105
(
1970
).
15.
J.
van Tol
,
L. C.
Brunel
, and
A.
Angerhofer
,
Appl. Magn. Reson.
21
,
335
(
2001
).
16.
R. H.
Zeng
,
J.
van Tol
,
A.
Deal
,
H. A.
Frank
, and
D. E.
Budil
,
J. Phys. Chem. B
107
,
4624
(
2003
).
17.
L.
Pasimeni
,
M.
Ruzzi
,
M.
Prato
,
T.
Da Ros
,
G.
Barbarella
, and
M.
Zambianchi
,
Chem. Phys.
263
,
83
(
2001
).
18.
T.
Da Ros
,
M.
Prato
,
D. M.
Guldi
,
M.
Ruzzi
, and
L.
Pasimeni
,
Chem.-Eur. J.
157
,
816
(
2001
).
19.
M.
Bortolus
,
M.
Prato
,
J.
van Tol
, and
A. L.
Maniero
,
Chem. Phys. Lett.
398
,
228
(
2004
).
20.
Y.
Xin
,
K.
Han
,
N.
Mateeva
,
H.
Garmestani
,
P.
Kalu
, and
K. H.
Dahmen
,
J. Mater. Res.
16
,
3073
(
2001
).
You do not currently have access to this content.