Quantitative electric force microscopy (EFM) is usually restricted to flat samples, because vertical sample topography traditionally makes quantitative interpretation of EFM data difficult. Many important samples, including self-assembled nanostructures, possess interesting nanoscale electrical properties in addition to complex topography. Here we present techniques for analysis of EFM images of such samples, using voltage modulated EFM augmented by three-dimensional simulations. We demonstrate the effectiveness of these techniques in analyzing EFM images of self-assembled SiGe nanostructures on insulator, report measured dielectric properties, and discuss the limitations sample topography places on quantitative measurement.

1.
B. D.
Terris
,
J. E.
Stern
,
D.
Rugar
, and
H. J.
Mamin
,
Phys. Rev. Lett.
63
,
2669
(
1989
).
2.
D. M.
Schaadt
,
E. T.
Yu
,
S.
Sankar
, and
A. E.
Berkowitz
,
Appl. Phys. Lett.
74
,
472
(
1999
).
3.
T. D.
Krauss
and
L. E.
Brus
,
Phys. Rev. Lett.
83
,
4840
(
1999
).
4.
P. A.
Rosenthal
,
E. T.
Yu
,
R. L.
Pierson
, and
P. J.
Zampardi
,
J. Appl. Phys.
87
,
1937
(
2000
).
5.
E. A.
Boer
,
M. L.
Brongersma
,
H. A.
Atwater
,
R. C.
Flagan
, and
L. D.
Bell
,
Appl. Phys. Lett.
79
,
791
(
2001
).
6.
R.
Ludeke
and
E.
Cartier
,
Appl. Phys. Lett.
78
,
3998
(
2001
).
7.
S.
Cunningham
,
I. A.
Larkin
, and
J. H.
Davis
,
Appl. Phys. Lett.
73
,
123
(
1998
).
8.
T.
Melin
,
D.
Deresmes
, and
D.
Stievenard
,
Appl. Phys. Lett.
81
,
5054
(
2002
).
9.
S.
Watanabe
,
K.
Hane
,
T.
Ohye
,
M.
Ito
, and
T.
Goto
,
J. Vac. Sci. Technol. B
11
,
1774
(
1993
).
10.
S.
Belaidi
,
P.
Girard
, and
G.
Leveque
,
J. Appl. Phys.
81
,
1023
(
1997
).
11.
Z. Y.
Li
,
B. Y.
Gu
, and
G. Z.
Yang
,
Phys. Rev. B
57
,
9225
(
1998
).
12.
J.
Colchero
,
A.
Gil
, and
A. M.
Baro
,
Phys. Rev. B
64
,
245403
(
2001
).
13.
S.
Gomez-Monivas
,
L. S.
Froufe
,
R.
Carminati
,
J. J.
Greffet
, and
J. J.
Saenz
,
Nanotechnology
12
,
496
(
2001
).
14.
S.
Gomez-Moñivas
,
L. S.
Froufe-Pérez
,
A. J.
Caamaño
, and
J. J.
Sáenz
,
Appl. Phys. Lett.
79
,
4048
(
2001
).
15.
Y.
Martin
,
C.
Williams
, and
H. K.
Wickramasinghe
,
J. Appl. Phys.
61
,
4782
(
1987
).
16.
T. R.
Albrecht
,
P.
Grutter
,
D.
Horne
, and
D.
Rugar
,
J. Appl. Phys.
69
,
668
(
1991
).
17.
D. W.
Abraham
,
C.
Williams
,
J.
Slinkman
, and
H. K.
Wickramasinghe
,
J. Vac. Sci. Technol. B
9
,
703
(
1991
).
18.
Q.
Xu
,
J. W. P
Hsu
,
J. A.
Carlin
,
R. M.
Sieg
,
J. J.
Boeckl
, and
S. A.
Ringel
,
Appl. Phys. Lett.
75
,
2111
(
1999
).
19.
T.
Hochwitz
,
A. K.
Henning
,
C.
Levey
,
C.
Daghlian
, and
J.
Slinkman
,
J. Vac. Sci. Technol. B
14
,
457
(
1996
).
20.
E.
Tevaarwerk
,
P.
Rugheimer
,
O. M.
Castellini
,
D. G.
Keppel
,
S. T.
Utley
,
D. E.
Savage
,
M. G.
Lagally
, and
M. A.
Eriksson
,
Appl. Phys. Lett.
80
,
4626
(
2002
).
21.
C.
Staii
,
A. T.
Johnson
, and
N. J.
Pinto
,
Nano Lett.
4
,
859
(
2004
).
22.
M.
Bockrath
,
N.
Markovic
,
A.
Shepard
,
M.
Tinkham
,
L.
Gurevich
,
L. P.
Kouwenhoven
,
M. W.
Wu
, and
L. L.
Sohn
,
Nano Lett.
2
,
187
(
2002
).
23.
FLEXPDE VERSION 3.10.1 (
PDE Solutions Inc
, Antioch, CA).
24.

To ensure correct gridding, we guide the gridding process around significant topographic features.

25.
F. J.
Giessibl
,
Appl. Phys. Lett.
78
,
123
(
2001
).
26.

The cumulative uncertainty in these equations is 3%.

27.

rinfluence=0.8z+4nm, where z=200nm/εSiO2+tip-sample separation, so rinfluence=60nm at a lift scan height of 20 nm.

You do not currently have access to this content.