We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80μm, and achieved a field sensitivity of 1.5pTHz12 and a magnetic moment sensitivity of 5.4×1018Am2Hz12 at a sensor-to-sample spacing of 100μm in the white noise region for frequencies above 100Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250μm to 1mm, and achieved sensitivities of 480180fTHz12 in the white noise region for frequencies above 100Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.

1.
J. R.
Kirtley
and
J. P.
Wikswo
, Jr.
,
Annu. Rev. Mater. Sci.
29
,
117
(
1999
).
3.
J. P.
Wikswo
,
SQUID Sensors: Fundamentals, Fabrication and Applications
, edited by
H.
Weinstock
(
Kluwer Academic
, Dordrecht,
1996
), p.
307
.
4.
I. M.
Thomas
,
S. M.
Freake
,
S. J.
Swithenby
, and
J. P.
Wikswo
,
Phys. Med. Biol.
38
,
1311
(
1993
).
5.
Y. R.
Chemla
,
H. L.
Grossman
,
T. S.
Lee
,
J.
Clarke
,
M.
Adamkiewicz
, and
B. B.
Buchanan
,
Biophys. J.
76
,
3323
(
1999
).
6.
F.
Baudenbacher
,
N. T.
Peters
,
P.
Baudenbacher
, and
J. P.
Wikswo
,
Physica C
368
,
24
(
2002
).
7.
J. R.
Holzer
,
L. E.
Fong
,
V. Y.
Sidorov
,
J. P.
Wikswo
, and
F.
Baudenbacher
,
Biophys. J.
87
,
4326
(
2004
).
8.
F.
Baudenbacher
,
L. E.
Fong
,
G.
Thiel
,
M.
Wacke
,
V.
Jazbinsek
,
J. R.
Holzer
,
A.
Stampfl
, and
Z.
Trontelj
,
Biophys. J.
88
,
690
(
2005
).
9.
S.
Chatraphorn
,
E. F.
Fleet
,
F. C.
Wellstood
,
L. A.
Knauss
, and
T. M.
Eiles
,
Appl. Phys. Lett.
76
,
2304
(
2000
).
10.
E. F.
Fleet
,
S.
Chatraphorn
,
F. C.
Wellstood
, and
L. A.
Knauss
,
IEEE Trans. Appl. Supercond.
9
,
4103
(
1999
).
11.
H.
Weinstock
,
IEEE Trans. Magn.
27
,
3231
(
1991
).
12.
J. P.
Wikswo
, Jr.
,
Applications of Superconductivity
, edited by
H.
Weinstock
(
Kluwer Academic
, Dordrecht,
2000
), p.
139
.
13.
U.
Klein
,
M. E.
Walker
,
C.
Carr
,
D. M.
McKirdy
,
C. M.
Pegrum
,
G. B.
Donaldson
,
A.
Cochran
, and
H.
Nakane
,
IEEE Trans. Appl. Supercond.
7
,
3037
(
1997
).
14.
A.
Abedi
,
J. J.
Fellenstein
,
A. J.
Lucas
, and
J. P.
Wikswo
,
Rev. Sci. Instrum.
70
,
4640
(
1999
).
15.
B. P.
Weiss
,
H.
Vali
,
F. J.
Baudenbacher
,
J. L.
Kirschvink
,
S. T.
Stewart
, and
D. L.
Shuster
,
Earth Planet. Sci. Lett.
201
,
449
(
2002
).
16.
B. P.
Weiss
,
J. L.
Kirschvink
,
F. J.
Baudenbacher
,
H.
Vali
,
N. T.
Peters
,
F. A.
Macdonald
, and
J. P.
Wikswo
,
Science
290
,
791
(
2000
).
17.
B. J.
Roth
,
N. G.
Sepulveda
, and
J. P.
Wikswo
, Jr.
,
J. Appl. Phys.
65
,
361
(
1989
).
18.
F.
Baudenbacher
,
N. T.
Peters
, and
J. P.
Wikswo
, Jr.
,
Rev. Sci. Instrum.
73
,
1247
(
2002
).
19.
B. P.
Weiss
,
F. J.
Baudenbacher
,
J. P.
Wikswo
, and
J. L.
Kirschvink
,
EOS Trans. Am. Geophys. Union
82
,
513
(
2001
).
20.
C. D.
Tesche
and
J.
Clarke
,
J. Low Temp. Phys.
29
,
301
(
1977
).
21.
J. M.
Jaycox and
M. B.
Ketchen
,
IEEE Trans. Magn.
17
,
400
(
1981
).
22.
F.
Baudenbacher
,
L. E.
Fong
,
J. R.
Holzer
, and
M.
Radparvar
,
Appl. Phys. Lett.
82
,
3487
(
2003
).
23.
J. E.
Zimmerman
,
J. Appl. Phys.
42
,
4483
(
1971
).
24.
L. E.
Fong
,
J. R.
Holzer
,
K.
McBride
,
E. A.
Lima
,
F.
Baudenbacher
, and
M.
Radparvar
,
Appl. Phys. Lett.
84
,
3190
(
2004
).
25.
T. S.
Lee
,
E.
Dantsker
, and
J.
Clarke
,
Rev. Sci. Instrum.
67
,
4208
(
1996
).
26.
F.
Gruhl
,
M.
Muck
,
M.
von Kreutzbruck
, and
J.
Dechert
,
Rev. Sci. Instrum.
72
,
2090
(
2001
).
27.
R. C.
Black
, Ph.D. thesis,
University of Maryland
,
1995
.
28.
J.
Clarke
,
W. M.
Goubau
, and
M. B.
Ketchen
,
J. Low Temp. Phys.
25
,
99
(
1976
).
29.
J. L.
Kirschvink
,
SQUID Applications to Geophysics
, edited by
H.
Weinstock
(
Kluwer Academic
, Dordrecht,
1981
), p.
111
.
30.
D. M.
Langrill
and
B. J.
Roth
,
IEEE Trans. Biomed. Eng.
48
,
1207
(
2001
).
31.
S.-F.
Lin
,
R. A.
Abbas
, and
J. P.
Wikswo
, Jr.
,
Rev. Sci. Instrum.
68
,
213
(
1997
).
32.
R.
Plonsey
and
R. C.
Barr
,
Biophys. J.
45
,
557
(
1984
).
33.
R.
Plonsey
and
Y.
Rudy
,
Med. Biol. Eng. Comput.
18
,
87
(
1980
).
You do not currently have access to this content.