Presented here is a Fourier transform infrared spectrometer (FTIR) for field studies that serves as a prototype for future Mars science applications. Infrared spectroscopy provides chemical information that is relevant to a number of Mars science questions. This includes mineralogical analysis, nitrogen compound recognition, truth testing of remote sensing measurements, and the ability to detect organic compounds. The challenges and scientific opportunities are given for the in situ FTIR analysis of Mars soil and rock samples. Various FTIR sampling techniques are assessed and compared to other analytical instrumentation. The prototype instrument presented is capable of providing field analysis in a Mars analog Antarctic environment. FTIR analysis of endolithic microbial communities in Antarctic rocks and a Mars meteor are given as analytical examples.

1.
Fourier Transform Infrared Spectrometry
, 2nd ed., edited by
P. R.
Griffiths
and
J. A.
De Haseth
(
Wiley-Interscience
, New York,
1986
).
2.
The NASA Planetary Instrument Definition and Development Program Announcements give a good overview. These are available online at the NASA web site, http://research.hq.nasa.gov/code_s/nra/current.
3.
S. W.
Squires
 et al,
J. Geophys. Res., [Planets]
108
(
2003
).
4.
Spectrometric Identification of Organic Compounds
, 4th ed., edited by
R. M.
Silverstein
(
Wiley
, New York,
1981
).
5.
P. R.
Christensen
 et al,
J. Geophys. Res., [Planets]
108
,
8064
(
2003
).
7.
W. W.
Dickinson
, and
M. R.
Rosen
,
Geology
31
,
199
(
2003
).
8.
Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures
, edited by
R.
Van Der Marel
and
H.
Beutelspacher
(
Elsevier Science
, St. Louis,
1976
).
9.
The Infrared Spectra of Minerals
, edited by
V. C.
Farmer
(
Mineralogical Society
, London,
1974
).
10.
Vibrational Spectra and the Structure of Silicates
, edited by
A. N.
Lazerev
(
Consultants Bureau
, New York,
1972
).
11.
A.
Wang
,
B. L.
Jolliff
, and
L. A.
Haskin
,
J. Geophys. Res., [Planets]
104
,
8509
(
1999
).
12.
J. W.
Salisbury
 et al,
Infrared Spectra of Minerals
,
The Johns Hopkins Studies in Earth and Space Science
, edited by
O. M.
Phillips
,
S. M.
Stanley
, and
D. F.
Strobel
(
Johns Hopkins University Press
, Baltimore,
1991
).
13.
G. O.
Linkletter
,
New Zealand J. Gelogy Geophys.
17
,
603
(
1974
).
14.
The Composition and Mineralogy of the Martian Surface from Spectroscopic Observations, in Mars
, edited by
L. A.
Soderblom
 et al (
University of Arizona Press
, Tucson,
1992
), p.
157
.
15.
A. S.
Yen
,
B. C.
Muarry
, and
G. R.
Rossman
,
J. Geophys. Res., [Planets]
103
,
11125
(
1998
).
16.
J. L.
Bishop
,
A.
Banin
,
R. L.
Mancinelli
, and
M. R.
Klovstad
,
Planet. Space Sci.
50
,
11
(
2002
).
17.
Y.
Itihara
and
K.
Suwa
,
Geochim. Cosmochim. Acta
49
,
145
(
1985
).
18.
M. A.
Bullock
and
C. R.
Stoker
,
Icarus
107
,
142
(
1994
).
19.
A. P.
Zent
J. Geophys. Res., [Planets]
103
,
31491
(
1998
).
20.
V. C.
Farmer
and
B. D.
Mitchell
,
Soil Sci.
96
,
221
(
1963
).
21.
S. A.
Benner
 et al,
Proc. Natl. Acad. Sci. U.S.A.
97
,
2425
(
2000
).
22.
W.
Wadsworth
 et al, in
Proceedings of the Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring
(
SPIE
,
Bellingham, WA
,
1998
), Vol.
3537
, pp.
54
61
.
23.
J. P.
Dybwad
and
W.
Winthrop
, in
Proceedings of the International Symposium on Spectral Sensing Research
,
Quebec City
,
10
15
June
2001
.
24.
C. J.
Hansen
and
D. A.
Paige
, “
SPADE: A Rock Crushing and Sample Handling System Developed for Mars Missions
,”
34th Annual Lunar and Planetary Science Conference
, March
2003
.
25.
M. P.
Fuller
and
P. R.
Griffiths
,
Anal. Chem.
50
,
1906
(
1978
).
26.
Fourier Transform Infrared Spectrometry
, edited by
P.
Griffiths
and
J.
de Haseth
(
Wiley
, New York,
1986
), Vol.
83
, pp.
194
202
.
27.
P.
Griffiths
and
M.
Fuller
,
Appl. Spectrosc.
34
,
533
(
1980
).
28.
F.
Esposito
,
L.
Colangeli
, and
E.
Palomba
,
J. Geophys. Res., [Planets]
105
,
17643
(
2000
).
You do not currently have access to this content.