A sensitive far-infrared (fir) interferometer for electron density measurements in reactive low-temperature plasmas is described. The instrument is based on an optically pumped fir laser (wavelength range 50600μm depending on the working gas) and makes use of the nonlinear relation between output power and cavity loss. The fir beam, which leaves the resonator through a coupling hole in the end mirror, is reflected back into the cavity, such that the coupling hole behaves like a variable “leak” with a loss rate depending on the phase of the reentering wave relative to the standing wave within the resonator. As a result of the feedback, the output intensity undergoes strong nonlinear variations if the optical distance of the external mirror is changed by small amounts, Δz. The power variation is monitored through a small opening in the external mirror. Test experiments using a wavelength of 432.6μm and a Schottky-diode detector have yielded a minimum detectable pathlength variation of Δz=0.4μm, corresponding to a change of the line-integrated electron density n¯e×L of about 5×1015m2. A first application to argon plasmas in inductively coupled rf discharges has been made, and the results have been compared to concomitant Langmuir probe measurements.

1.
I. H.
Hutchinson
,
Principles of Plasma Diagnostics
(
Cambridge University Press
, Cambridge,
1987
).
2.
K.
Muraoka
,
K.
Uchino
, and
M. D.
Bowden
,
Plasma Phys. Controlled Fusion
40
,
1221
(
1998
).
3.
M. A.
Heald
and
C. B.
Wharton
,
Plasma Diagnostics with Microwaves
(
Wiley
, New York,
1965
).
4.
G. A.
Hebner
,
J. T.
Verdeyen
, and
M. J.
Kushner
,
J. Appl. Phys.
63
,
2226
(
1988
).
5.
L. J.
Overzet
and
M. B.
Hopkins
,
J. Appl. Phys.
74
,
4323
(
1993
).
6.
N.
Niemöller
,
V.
Schulz-von der Gathen
,
A.
Stampa
, and
H. F.
Döbele
,
Plasma Sources Sci. Technol.
6
,
478
(
1997
).
7.
C.
Lukas
,
M.
Müller
,
V.
Schulz-von der Gathen
, and
H. F.
Döbele
,
Plasma Sources Sci. Technol.
8
,
94
(
1999
).
8.
D.
Véron
,
Opt. Commun.
10
,
95
(
1974
).
9.
P. G.
King
and
G. J.
Stewart
,
New Sci.
17
,
180
(
1963
).
10.
D. E.
Ashby
and
D. F.
Jephcott
,
Appl. Phys. Lett.
3
,
13
(
1963
).
11.
R. W.
Peterson
and
F. C.
Jahoda
,
Appl. Phys. Lett.
18
,
440
(
1971
).
12.
A. E.
Siegman
,
Lasers
(
University Science Books
, Mill Valley,
1986
).
13.
S.
Jacobsson
,
Infrared Phys.
29
,
853
(
1989
).
14.
N. G.
Douglas
,
Millimetre and Submillimetre Wavelength Lasers
(
Springer
, Berlin,
1989
).
15.
D.
Véron
, in
Infrared and Millimeter Waves
edited by
K. J.
Button
(
Academic
, New York,
1979
), Vol.
2
.
16.
P. A.
Miller
,
G. A.
Hebner
,
K. E.
Greenberg
,
P. D.
Pochan
, and
B. P.
Aragon
,
J. Res. Natl. Inst. Stand. Technol.
100
,
427
(
1995
).
17.
S. V.
Singh
,
Yu.
Ivanov
, and
H.
Soltwisch
,
Czech. J. Phys.
52
,
576
(
2002
).
18.
W.
Kasper
,
P.
Awakowicz
, and
A.
Janich
,
Manual: Automatic Langmuir Probe in Triaxial Technology
(
Kasper
, Munich,
1999
).
19.
J. D.
Swift
and
M. J.R.
Schwar
,
Electrical Probes For Plasma Diagnostic
(
Elsevier
, New York,
1969
).
20.
H.
Alius
and
G.
Dodel
,
Infrared Phys. Technol.
35
,
73
(
1994
).
You do not currently have access to this content.