Design considerations and development steps towards the construction of an open-path laser-induced plasma spectrometer for remote elemental measurements are presented and the main variables influencing the analytical signal discussed. The instrument is based on a coaxial optical design where the interrogating laser beam and the returning plasma light share the same optical axis. This scheme allows both tight focusing of the infrared laser radiation to induce a plasma on a remote sample surface and collection of the ultraviolet-visible plasma emission through the same open air path. The selection of the optical scheme and the different components of the instrument are discussed on the basis of the measurement range, the light throughput and signal-to-noise ratio considerations. The results presented demonstrate the feasibility of the open-path laser-induced plasma spectrometry approach to remote atomic-emission spectrometry in the hundred meters range. Based on these results, additional estimations evidence the potential of the technique for measurements in the thousand meters range.

1.
F.
Molero
and
F.
Jaque
,
Opt. Mater. (Amsterdam, Neth.)
13
,
167
(
1999
).
2.
M. A.
Gondal
and
J.
Mastromarino
,
Talanta
53
,
146
(
2000
).
3.
M.
Basan
et al.,
EARSeL Adv. Remote Sens.
1
,
106
(
1992
).
4.
P.
Weibring
,
H.
Edner
, and
S.
Svanberg
,
Appl. Opt.
42
,
3583
(
2003
).
5.
K. J.
Lee
,
Y.
Park
,
A.
Bunkin
,
R.
Nunes
,
S.
Pershin
, and
K.
Voliak
,
Appl. Opt.
41
,
401
(
2002
).
6.
P. J.
Zarco-Tejada
,
J. R.
Miller
,
G. H.
Mohammed
,
T. L.
Noland
, and
P. H.
Sampson
,
Remote Sens. Environ.
74
,
596
(
2000
).
7.
P.
Weibring
,
Th.
Johansson
,
H.
Edner
,
S.
Svanberg
,
B.
Sundnér
,
V.
Raimondi
,
G.
Cecchi
, and
L.
Pantani
,
Appl. Opt.
40
,
6111
(
2001
).
8.
L.
Pantani
et al.,
J. Cult. Herit.
1
,
345
(
2000
).
9.
R. M. Measures, in Laser Remote Sensing: Fundamental and Applications, edited by R. M. Measures (Wiley, New York, 1984), Chap. 1, pp. 1–84.
10.
M.
Wu
,
M.
Ray
,
K. H.
Fung
,
M. W.
Ruckman
,
D.
Harder
, and
A. J.
Sedlacek
III
,
Appl. Spectrosc.
54
,
800
(
2000
).
11.
A. V.
Malinka
and
E. P.
Zege
,
Appl. Opt.
42
,
1075
(
2003
).
12.
P. R.
Griffiths
,
B. K.
Hart
,
H.
Yang
, and
R. J.
Berry
,
Talanta
53
,
223
(
2000
).
13.
D. A.
Cremers
,
J. E.
Barefield
II
, and
A. C.
Koskelo
,
Appl. Spectrosc.
49
,
857
(
1995
).
14.
U.
Panne
,
TrAC, Trends Anal. Chem.
17
,
491
(
1998
).
15.
S.
Palanco
and
J. J.
Laserna
,
J. Anal. At. Spectrom.
15
,
1321
(
2000
).
16.
S.
Palanco
,
A.
Alises
,
J.
Cuñat
,
J. M.
Baena
, and
J. J.
Laserna
,
J. Anal. At. Spectrom.
18
,
933
(
2003
).
17.
S.
Palanco
,
L. M.
Cabalin
,
D.
Romero
, and
J. J.
Laserna
,
J. Anal. At. Spectrom.
14
,
1883
(
1999
).
18.
A. K.
Knight
,
N. L.
Scherbarth
,
D. A.
Cremers
, and
M. J.
Ferris
,
Appl. Spectrosc.
54
,
331
(
2000
).
19.
S.
Palanco
,
J. M.
Baena
, and
J. J.
Laserna
,
Spectrochim. Acta, Part B
57
,
591
(
2002
).
20.
J. M.
Vadillo
,
P. L.
Garcı́a
,
S.
Palanco
,
D.
Romero
,
J. M.
Baena
, and
J. J.
Laserna
,
Anal. Bioanal. Chem.
375
,
1144
(
2003
).
21.
G. M. Weyl, in Laser Induced Plasmas and Applications, edited by L. J. Radziemski and D. A. Cremers (Marcel Dekker, New York, 1989), Chap. 1, pp. 1–68.
22.
L. M.
Cabalin
,
D.
Romero
,
J. M.
Baena
, and
J. J.
Laserna
,
Fresenius' J. Anal. Chem.
365
,
404
(
1999
).
23.
L. M.
Cabalı́n
,
D.
Romero
,
J. M.
Baena
, and
J. J.
Laserna
,
Surf. Interface Anal.
27
,
805
(
1999
).
24.
L. M.
Cabalin
and
J. J.
Laserna
,
Spectrochim. Acta, Part B
53
,
723
(
1998
).
25.
Winlens Optical Design Software, LINOS Photonics GmbH & Co. KG, Koenigsalle 23, D37081 Goettingen, Germany.
26.
Zemax Optical Design Software, ZEMAX Development Corporation. 4901 Morena Blvd. Suite 207, San Diego, CA 92117-7320.
27.
K. W. Busch and M. A. Busch, in Multielement Detection Systems for Spectrochemical Analysis (Wiley, New York, 1990), Chap. 13, pp. 511–542.
28.
B. C.
Castle
,
K.
Talabardon
,
B. W.
Smith
, and
J. D.
Winefordner
,
Appl. Spectrosc.
52
,
649
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.