Spot profile analysis low energy electron diffraction (SPA-LEED) is one of the most versatile and powerful methods for the determination of the structure and morphology of surfaces even at elevated temperatures. In setups where the sample is heated directly by an electric current, the resolution of the diffraction images at higher temperatures can be heavily degraded due to the inhomogeneous electric and magnetic fields around the sample. Here we present an easily applicable modification of the common data acquisition hardware of the SPA-LEED, which enables the system to work in a pulsed heating mode: Instead of heating the sample with a constant current, a square wave is used and electron counting is only performed when the current through the sample vanishes. Thus, undistorted diffration images can be acquired at high temperatures.

1.
C.
Davisson
and
L. H.
Germer
,
Phys. Rev.
30
,
705
(
1927
).
2.
M. P.
Seah
and
W. A.
Dench
,
Surf. Interface Anal.
1
,
2
(
1979
).
3.
K. D.
Gronwald
and
M.
Henzler
,
Surf. Sci.
117
,
180
(
1982
).
4.
U.
Scheithauer
,
G.
Meyer
, and
M.
Henzler
,
Surf. Sci.
178
,
441
(
1986
).
5.
R. L.
Park
and
H. E.
Farnsworth
,
Rev. Sci. Instrum.
35
,
1592
(
1964
).
6.
C. W.
Caldwell
,
Rev. Sci. Instrum.
36
,
1500
(
1965
).
7.
E.
Bauer
,
Z. Metallkd.
63
,
437
(
1972
).
8.
M. G.
Lagally
and
J. A.
Martin
,
Rev. Sci. Instrum.
54
,
1273
(
1983
).
9.
M. Horn-von
Hoegen
,
Z. Kristallogr.
214
,
1
(
1999
).
10.
P.
Zahl
and
M. Horn-von
Hoegen
,
Rev. Sci. Instrum.
73
,
2958
(
2002
).
11.
A. J.
Schell-Sorokin
and
R. M.
Tromp
,
Phys. Rev. Lett.
64
,
1039
(
1990
).
12.
P.
Zahl
,
P.
Kury
, and
M. Horn-von
Hoegen
,
Appl. Phys. A: Mater. Sci. Process.
69
,
481
(
1999
).
13.
P.A.
Tipler
, Physik (Spektrum akademischer, Heidelberg,
1995
).
14.
In this case, the heat capacity at constant pressure cP is used.
15.
V. M.
Glazov
,
A. S.
Paschkin
, and
M. S.
Mikhailova
,
Scand. J. Metall.
30
,
388
(
2001
).
16.
http://www.webelements.com
17.
R.
Hild
, PhD thesis (unpublished).
18.
Here, the emissivity ε describes the radiation of the sample in comparison to a black body, but averaged over all wavelengths ε(T)=〈ε(λ,T)〉λ, so that the Stefan-Boltzmann law is fulfilled.
19.
J. C.
Tracy
,
Rev. Sci. Instrum.
39
,
1300
(
1968
).
20.
G.
Held
,
S.
Uremovic
,
C.
Stellwag
, and
D.
Menzel
,
Rev. Sci. Instrum.
67
,
378
(
1996
).
21.
http://www.instrument.com
22.
see http://www.sjuts.com
23.
U.
Tietze
and
C.
Schenk
, Halbleiter-Schaltungstechnik, 12th ed. (Springer, Berlin,
2002
).
24.
J.
Kammerer
,
W.
Oberthür
,
J.
Piegsa
, and
H.J.
Siedler
, Elektronik III (Grundschaltungen) (Pflaum, Munich,
1980
).
25.
J.
Aldag
and
R. M.
Stern
,
Phys. Rev. Lett.
14
,
857
(
1965
).
26.
A. U.
MacRae
and
L. H.
Germer
,
Phys. Rev. Lett.
8
,
489
(
1962
).
27.
However, it should be noted that normally the strong distortions in the diffraction images taken with dc heating can either be reduced by refocusing the electron gun and/or changing the position of the ground potential point on the sample, or only a one-dimensional profile may be needed: then the diffraction spots can be elongated in one direction without compromising the measurement.
28.
K.
Takayanagi
,
Y.
Tanishiro
,
S.
Takahashi
, and
M.
Takahashi
,
Surf. Sci.
164
,
367
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.