Nondeterministic random bits are needed in many scientific fields. Unfortunately today’s computers are very limited in ability to produce them. We present here a method for extraction of nondeterministic random bits from random physics processes and one practical realization of a physical generator based on it. Even if processes are weakly correlateed the method is shown to deliver increasingly good randomness in the limit of slow sampling. A sample of approximately 109bits produced by the physical generator prototype is subjected to a series of well-known statistical tests showing no weaknesses.

1.
R.
Soloway
and
V.
Strassen
,
SIAM J. Comput.
6
,
84
(
1976
.
2.
M.A.
Nielsen
and
I.L.
Chuang
, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge,
2000
), p.
2
.
3.
Wikipedia, the free encyclopedia, Internet URL: http://www.wikipedia.org/wiki/Probabilistic_Turing_Machine.
4.
M.
Luescher
,
Comput. Phys. Commun.
79
,
100
(
1994
).
5.
F.
James
,
Comput. Phys. Commun.
79
,
111
(
1994
).
6.
P.
Hellekalek
,
Math. Comput. Simul.
46
,
485
(
1998
).
7.
G.
Marsaglia
,
Stat. Probab. Lett.
9
,
345
(
1990
).
8.
C.H.
Bennet
and
G.
Brassard
, Quantum Cryptography: Public Key Distribution and Coin Tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York,
1984
), p.
175
.
9.
U.
Maurer
,
IEEE Trans. Inf. Theory
39
,
733
(
1993
).
10.
R.L.
Rivest
,
The RC4 Encryption Algorithm
, RSA Data Security Inc., March 12,
1992
.
11.
I.
Goldberg
,
D.
Wagner
, and .
Dobb’s
, January
1996
.
12.
D.
Davis
,
R.
Ihaka
, and
P.
Fenstermacher
, Cryptographic Randomness from Air Turbulence in Disk Drives, in Lecture Notes in Computer Science (Springer, Berlin,
1984
), p.
839
.
13.
D.
Eastlake
,
S.
Crocker
, and
J.
Schiller
, Randomness Recommendations for Security, Internet RFC 1750, December
1994
.
14.
T.
Ts’o
(private communication). See also Linux man page urandom (4) and source code of Linux kernel ver. 2.4.18, file random.c.
15.
D.E.
Knuth
, The Art of Computer Programming, 3rd ed. (Addison–Wesley, Reading,
1997
), Vol.
2
.
16.
C. H.
Vincent
,
J. Phys. E
3
,
594
(
1970
).
17.
V.
Bagini
and
M.
Bucci
, A Design of Reliable True Random Number Generator for Cryptographic Applications, in Proceedings of CHES’99 Workshop (Springer, Berlin,
2000
), p.
204
.
18.
Security Requirements for Cryptographic Modules, Federal Information Processing Standards Publication
140-1
(FIPS, Gaithersburg,
1994
).
19.
P. I.
Somlo
,
Electron. Lett.
11
,
290
(
1975
).
20.
M.
Stipčević
, Some properties of inverted distributions and their application in sampling random phenomena, to appear in the Cryptology ePrint Archive, Internet URL: +http://eprint.iacr.org
21.
ENT—A Pseudorandom Number Sequence Test Program
,
J.
Walker
, Internet URL: +http://www.fourmilab.ch/random/
22.
DIEHARD battery of stringent randomness tests (various articles and software),
G.
Marsaglia
, Internet URL: +http://stat.fsu.edu/̃geo/diehard.html, also available on CDROM online.
23.
A.
Rukhin
et al., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication (NIST, Gaithersburg,
2001
).
24.
M.J.
Atallah
, Algorithms and Theory of Computation Handbook (CRC Press LLC, Boca Raton,
1998
), p.
29
.
25.
W.H.
Press
,
B.P.
Flannery
,
S.A.
Teukolsky
, and
W.T.
Vetterling
, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York,
1992
).
26.
W. E.
Sharp
and
C.
Bays
,
Comput. Geosci.
18
,
79
(
1992
).
27.
A. J.
Miller
and
P.
Mars
,
Math. Comput. Simul.
19
,
198
(
1997
).
28.
S.
Agostinelli
et al.,
Nucl. Instrum. Methods Phys. Res. A
506
,
250
(
2003
).
29.
M. O.
Rabin
,
J. Number Theory
12
,
128
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.