Amorphous metallic alloys lack long-range atomic order and consequently exhibit excellent homogeneity, no microstructure discontinuities, and no sharp x-ray diffraction peaks. Moreover they have higher tensile fracture strength and hardness than those of traditional crystalline metals. These excellent physical properties make bulk metallic glasses good candidates for high pressure gaskets for in situ x-ray/neutron diffraction experiments. We tested the Pd40Ni40P20 amorphous alloy as a gasket material in three experiments. The behavior of the Pd40Ni40P20 amorphous alloy under a hydrostatic/nonhydrostatic pressure of over 100 GPa was investigated by in situ synchrotron x-ray diffraction. The pressure gradient of the amorphous metallic gasket in the diamond anvil cell was measured on the ruby fluorescence scale during compression and decompression. The results show that bulk metallic glasses are good high-pressure gasket materials for in situ x-ray diffraction experiments.

1.
M. Eremets, High Pressure Experimental Methods (Oxford Science, 1996).
2.
H. K.
Mao
and
P. M.
Bell
,
Carnegie Inst. Washington Publ.
74
,
402
(
1975
).
3.
H. K.
Mao
and
P. M.
Bell
,
Science
200
,
1145
(
1978
).
4.
J.
Xu
,
H. K.
Mao
, and
P. M.
Bell
,
Science
232
,
1404
(
1986
).
5.
H. K.
Mao
,
P. M.
Bell
,
K. J.
Dunn
,
R. M.
Chrenko
, and
R. C.
DeVries
,
Rev. Sci. Instrum.
50
,
1002
(
1979
).
6.
D. J.
Dunstan
,
Rev. Sci. Instrum.
60
,
3789
(
1989
).
7.
J.
Macavei
and
H.
Schulz
,
Rev. Sci. Instrum.
61
,
2236
(
1990
).
8.
G.
Zou
,
Y.
Ma
,
H. K.
Mao
,
R. J.
Hemley
, and
S. A.
Gramsch
,
Rev. Sci. Instrum.
72
,
1298
(
2001
).
9.
A.
Inoue
,
Acta Mater.
48
,
279
(
2000
).
10.
H. W.
Kui
,
A. L.
Greer
, and
D.
Turnbull
,
Appl. Phys. Lett.
45
,
615
(
1984
).
11.
A. J.
Drehman
,
A. L.
Greer
, and
D.
Turnbull
,
Appl. Phys. Lett.
41
,
716
(
1982
).
12.
Y.
He
,
R. B.
Schwarz
, and
J. I.
Archuleta
,
Appl. Phys. Lett.
69
,
1861
(
1996
).
13.
T. D.
Shen
,
Y.
He
, and
R. B.
Schwarz
,
J. Mater. Res.
14
,
2107
(
1999
).
14.
Y.
Zhao
et al.,
J. Mater. Res.
17
,
3139
(
2002
).
15.
D. W.
He
,
M.
Akaishi
,
B. L.
Scott
, and
Y.
Zhao
,
J. Mater. Res.
17
,
284
(
2002
).
16.
D. W.
He
,
Y.
Zhao
,
L.
Daemen
,
J.
Qian
,
T. D.
Shen
, and
T. W.
Zerda
,
Appl. Phys. Lett.
81
,
643
(
2002
).
17.
W. H.
Wang
,
D. W.
He
,
D. Q.
Zhao
,
Y. S.
Yao
, and
M.
He
,
Appl. Phys. Lett.
75
,
2270
(
1999
).
18.
D. W.
He
,
Q.
Zhao
,
W. H.
Wang
,
R. Z.
Che
,
J.
Liu
,
X. J.
Luo
, and
W. K.
Wang
,
J. Non-Cryst. Solids
297
,
84
(
2002
).
19.
R. J.
Hemley
,
L. C.
Chen
, and
H. K.
Mao
,
Nature (London)
338
,
638
(
1989
).
20.
N.
Hamaya
,
K.
Sato
,
K.
Usui-Watanabe
,
K.
Fuchizaki
,
Y.
Fuiji
, and
Y.
Ohishi
,
Phys. Rev. Lett.
79
,
4597
(
1997
).
21.
O.
Shimomura
,
S.
Minomura
,
N.
Sakai
,
K.
Asaumi
,
K.
Tamura
,
J.
Fukushima
, and
H.
Endo
,
Philos. Mag.
29
,
574
(
1974
).
22.
J. Z.
Jiang
,
Y. X.
Zhuang
,
H.
Rasmussen
,
N.
Nishiyama
,
A.
Inoue
, and
C.
Lathe
,
Europhys. Lett.
54
,
182
(
2001
).
23.
X. J.
Gu
,
J. Q.
Wang
,
F.
Ye
, and
K.
Lu
,
J. Non-Cryst. Solids
296
,
74
(
2001
).
24.
W. K.
Wang
,
H.
Iwasaki
,
C.
Suryanarayana
, and
T.
Masumoto
,
J. Mater. Sci.
18
,
3765
(
1983
).
25.
J.-J.
Kim
,
Y.
Choi
,
S.
Suresh
, and
A. S.
Argon
,
Science
295
,
654
(
2002
).
26.
J.-A.
Xu
and
H.-K.
Mao
,
Science
290
,
783
(
2000
).
27.
R. C.
O’Handley
,
J. Appl. Phys.
62
,
R12
(
1987
).
28.
N. M.
Balzaretti
,
E. J.
Gonzalez
,
G. J.
Piermarini
, and
T. P.
Russell
,
Rev. Sci. Instrum.
70
,
4316
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.