We describe a recently designed and constructed system based on a 1 m normal incidence vacuum monochromator with corrected (toroidal) optics that produces a wavelength tuneable and collimated vacuum-ultraviolet (VUV) (λ=30–100 nm) beam. The VUV continuum source is a laser-generated gold plasma. The primary function of the system is the measurement of time resolved “images” or spatial distributions of photoabsorption/photoionization in expanding laser plasma plumes. This is achieved by passing the beam through the sample of interest (in our case a second synchronised plasma) and recording the “footprint” of the attenuated beam on a charge coupled device. Using this VUV photoabsorption imaging or “shadowgraphy” technique we track and extract column density distributions in expanding plasma plumes. We can also measure the plume front velocity. We have characterized the system, particularly in relation to spectral and spatial resolution and the experimental results meet very well the expectations from ray tracing done at the design phase. We present first photoabsorption images and column density distributions of laser produced Ca plumes from the system.

1.
K. W.
Mah
,
J.-P.
Mosnier
,
E.
McGlynn
,
M. O.
Henry
,
D.
O’Mahony
, and
J. G.
Lunney
,
Appl. Phys. Lett.
80
,
3301
(
2002
).
2.
M. A.
Khater
,
P.
van Kampen
,
J. T.
Costello
,
J.-P.
Mosnier
, and
E. T.
Kennedy
,
J. Phys. D
33
,
2252
(
2000
).
3.
H. M.
Hertz
,
M.
Berglund
,
B. A. M.
Hansson
,
O.
Hemberg
, and
G. J.
Johansson
,
J. Phys. IV
11
,
389
(
2001
).
4.
A. G.
Michette
,
R.
Fedosejevs
,
S. J.
Pfauntsch
, and
R.
Bobkowski
,
Meas. Sci. Technol.
5
,
555
(
1994
).
5.
A.
Neogi
and
R. K.
Thareja
,
J. Appl. Phys.
85
,
1131
(
1999
).
6.
D. B.
Geohegan
,
A. A.
Puretzky
,
G.
Duscher
, and
S. J.
Pennycook
,
Appl. Phys. Lett.
72
,
2987
(
1998
).
7.
T. P.
Williamson
,
G. W.
Martin
,
A. H.
El-Astal
,
A.
Al-Khateeb
,
I.
Weaver
,
D.
Riley
,
M. J.
Lamb
,
T.
Morrow
, and
C. L. S.
Lewis
,
Appl. Phys. A: Mater. Sci. Process.
69
,
S859
(
1999
).
8.
J. T.
Costello
,
E. T.
Kennedy
,
J.-P.
Mosnier
,
P. K.
Carroll
, and
G.
O’Sullivan
,
Phys. Scr., T
34
,
77
(
1991
).
9.
E.
Jannitti
,
P.
Nicolosi
, and
G.
Tondello
,
Phys. Scr.
41
,
458
(
1990
).
10.
P. K.
Carroll
,
E. T.
Kennedy
, and
G.
O’Sullivan
,
Opt. Lett.
2
,
72
(
1978
).
11.
J. S.
Hirsch
et al.,
J. Appl. Phys.
88
,
4953
(
2000
).
12.
Details on Andor Technology CCD cameras are available at http://www.andor-tech.com/main3.htm
13.
O.
Meighan
et al.,
J. Phys. B
33
,
1159
(
2000
).
14.
J.
Fischer
,
M.
Kühne
, and
B.
Wende
,
Appl. Opt.
23
,
4252
(
1984
).
15.
P.
Villoresi
,
P.
Nicolosi
, and
M.
Pelizzo
,
Appl. Opt.
39
,
85
(
2000
).
16.
G. Bonfante, M.Sc. thesis, Universita degli Studi di Padova, 1989 (unpublished—details from LP at poletto@dei.unipd.it)
17.
J. A. R Samson, Vacuum Ultraviolet Spectroscopy (Cruithne, Glasgow, 2000).
18.
C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (Wiley Interscience, New York, 1989).
19.
I. C.
Lyon
,
B.
Peart
,
J. B.
West
, and
K.
Dolder
,
J. Phys. B
19
,
4137
(
1986
).
20.
Information on Microcal Origin is available at http://www.originlab.com/www/products/origin/index.asp
21.
Information on Matlab is available at http://www.mathworks.com/programs/release13/index.shtml
This content is only available via PDF.
You do not currently have access to this content.