We have developed a sensitive experiment which allows the measurement of the growth of holes in thin freely standing polystyrene (PS) films at elevated temperatures. In the experiment, a constant small pressure difference is applied and maintained across the freely standing film, and the formation and growth of holes is detected as a flow of air through the film. From measurements of freely standing PS films for which the glass transition temperature Tg is equal to the bulk value Tgbulk, as well as for films that are sufficiently thin that Tg is 30 °C less than Tgbulk, we find that substantial chain mobility occurs only at temperatures that are comparable to Tgbulk. The results can be interpreted as a shear thinning effect, which is consistent with previous optical microscopy measurements of hole growth in freely standing PS films.

1.
J. L.
Keddie
,
R. A. L.
Jones
, and
R. A.
Cory
,
Europhys. Lett.
27
,
59
(
1994
).
2.
J. A.
Forrest
,
K.
Dalnoki-Veress
,
J. R.
Stevens
, and
J. R.
Dutcher
,
Phys. Rev. Lett.
77
,
2002
(
1996
);
J. A.
Forrest
,
K.
Dalnoki-Veress
,
J. R.
Stevens
, and
J. R.
Dutcher
,
Phys. Rev. Lett.
77
,
4108
(
1996
).
3.
J. H.
van Zanten
,
W. E.
Wallace
, and
W. L.
Wu
,
Phys. Rev. E
53
,
R2053
(
1996
).
4.
J. A.
Forrest
,
K.
Dalnoki-Veress
, and
J. R.
Dutcher
,
Phys. Rev. E
56
,
5705
(
1997
).
5.
J. A.
Forrest
and
J.
Mattsson
,
Phys. Rev. E
61
,
R53
(
2000
).
6.
K.
Dalnoki-Veress
,
J. A.
Forrest
,
P.-G.
de Gennes
, and
J. R.
Dutcher
,
J. Phys. IV
10
,
Pr7
-
221
(
2000
).
7.
J. A. Forrest and R. A. L. Jones, in Polymer Surfaces, Interfaces and Thin Films, edited by A. Karim and S. Kumar (World Scientific, Singapore, 2000).
8.
K.
Dalnoki-Veress
,
J. A.
Forrest
,
C.
Murray
,
C.
Gigault
, and
J. R.
Dutcher
,
Phys. Rev. E
63
,
031801
(
2001
).
9.
S.
Kawana
and
R. A. L.
Jones
,
Phys. Rev. E
63
,
021501
(
2001
).
10.
J. A.
Forrest
and
K.
Dalnoki-Veress
,
Adv. Colloid Interface Sci.
94
,
167
(
2001
).
11.
B.
Frank
,
A. P.
Gast
,
T. P.
Russell
,
H. R.
Brown
, and
C.
Hawker
,
Macromolecules
29
,
6531
(
1996
).
12.
D. B.
Hall
and
J. M.
Torkelson
,
Macromolecules
31
,
8817
(
1998
).
13.
K. C.
Tseng
,
N. J.
Turro
, and
C. J.
Durning
,
Phys. Rev. E
61
,
1800
(
2000
).
14.
X.
Zheng
,
M. H.
Rafailovich
,
J.
Sokolov
,
Y.
Strzhemechny
,
S. A.
Schwarz
,
B. B.
Sauer
, and
M.
Rubinstein
,
Phys. Rev. Lett.
79
,
241
(
1997
).
15.
Y.
Pu
,
M. H.
Rafailovich
,
J.
Sokolov
,
D.
Gersappe
,
T.
Peterson
,
W.-L.
Wu
, and
S. A.
Schwarz
,
Phys. Rev. Lett.
87
,
206101
(
2001
).
16.
Y.
Pu
,
H.
White
,
M. H.
Rafailovich
,
J.
Sokolov
,
A.
Patel
,
C.
White
,
W.-L.
Wu
,
V.
Zaitsev
, and
S. A.
Schwarz
,
Macromolecules
34
,
8518
(
2001
).
17.
G.
Reiter
,
Europhys. Lett.
23
,
579
(
1993
).
18.
G.
Debrégeas
,
P.
Martin
, and
F.
Brochard-Wyart
,
Phys. Rev. Lett.
75
,
3886
(
1995
).
19.
G.
Debrégeas
,
P.-G.
de Gennes
, and
F.
Brochard-Wyart
,
Science
279
,
1704
(
1998
).
20.
K.
Dalnoki-Veress
,
B. G.
Nickel
,
C.
Roth
, and
J. R.
Dutcher
,
Phys. Rev. E
59
,
2153
(
1999
).
21.
J.
Hammerschmidt
,
W.
Gladfelter
, and
G.
Haugstad
,
Macromolecules
32
,
3360
(
1999
).
22.
S.
Ge
,
Y.
Pu
,
W.
Zhang
,
M.
Rafailovich
,
J.
Sokolov
,
C.
Buenviaje
,
R.
Buckmaster
, and
R. M.
Overney
,
Phys. Rev. Lett.
85
,
2340
(
2000
).
23.
X. P.
Wang
,
X.
Xiao
, and
O. K. C.
Tsui
,
Macromolecules
34
,
4180
(
2001
).
24.
V. N.
Bliznyuk
,
H. E.
Assender
, and
G. A. D.
Briggs
,
Macromolecules
35
,
6613
(
2002
).
25.
V.
Zaporojtchenko
,
T.
Strunskus
,
J.
Erichsen
, and
F.
Faupel
,
Macromolecules
34
,
1125
(
2001
).
26.
Y.
Liu
,
T. P.
Russell
,
M. G.
Samant
,
J.
Stöhr
,
H. R.
Brown
,
A.
Cossy-Favre
, and
J.
Diaz
,
Macromolecules
30
,
7768
(
1997
).
27.
M.
Hamdorf
and
D.
Johannsmann
,
J. Chem. Phys.
112
,
4262
(
2000
).
28.
T.
Kerle
,
Z. Q.
Lin
,
H. C.
Kim
, and
T. P.
Russell
,
Macromolecules
34
,
3484
(
2001
).
29.
A.
Vrij
,
F. Th.
Hesselink
,
J.
Lucassen
, and
M.
Van Den Tempel
,
Koninkl. Nederl. Academie van Wetenschappen Amsterdam B
73
,
124
(
1970
).
30.
W. W.
Graessley
,
Adv. Polym. Sci.
16
,
1
(
1974
).
31.
E. I.
Bromley
,
J. N.
Randall
,
D. C.
Flanders
, and
R. W.
Mountain
,
J. Vac. Sci. Technol. B
1
,
1364
(
1983
).
32.
M. G.
Allen
,
M.
Mehregany
,
R. T.
Howe
, and
S. D.
Senturia
,
Appl. Phys. Lett.
51
,
241
(
1987
).
33.
W. A.
Goedel
and
R.
Heger
,
Langmuir
14
,
3470
(
1998
).
34.
G.
Rossi
and
M.
Nulman
,
J. Appl. Phys.
74
,
5471
(
1993
).
35.
K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York, 1987).
36.
J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff, The Hague, 1983).
37.
Actually P14(0)=Patm+ΔP, but ΔP≪Patm such that P14=Patm is a very good approximation.
38.
C. B. Roth and J. R. Dutcher (unpublished).
39.
The assumption that P14(t) is a constant is only accurate to within about 30% during the course of the experiment because the movement of the piston decreases the total volume and increases the pressures in the system. However, in the integrand of Eq. (A1), this time dependence of P14 is small enough compared with the exponential time dependence of the hole radii that it can be neglected.
This content is only available via PDF.
You do not currently have access to this content.