Standing ocean waves driven by storms can excite surface waves in the ocean floor at twice the wave frequency. These traverse large distances on land and are called the double-frequency (DF) microseism. The Laser Interferometer Gravitational-wave Observatory (LIGO) detector relies on length servos to maintain optical resonance in its 4 km Fabry–Pérot cavities, which consist of seismically isolated in-vacuum suspended test mass mirrors in three different buildings. Correcting for the DF microseism motion can require tens of micrometers of actuation, a significant fraction of the feedback dynamic range. The LIGO seismic isolation design provides an external fine actuation system (FAS), which allows long-range displacement of the optical tables that support the test mass suspensions. We report on a feedforward control system that uses seismometer signals from each building to produce correction signals, which are applied to the FAS, largely removing the microseism disturbance independently of length control servos. The root-mean-squared displacement from the microseism near 0.15 Hz can be reduced by 10 dB on average.

1.
N. A.
Robertson
,
Class. Quantum Grav.
17
,
R19
(
2000
).
2.
J. Hough and S. Rowan, Living Rev. Relativ. 3 (2000), 3.
[On-line article]: cited 15 Aug. 2001; http://www.livingreviews.org/Articles/Volume3/2000-3hough/
3.
P.
Fritschel
,
R.
Bork
,
G.
Gonzalez
,
N.
Mavalvala
,
D.
Ouimette
,
H. S.
Rong
,
D.
Sigg
, and
M.
Zucker
,
Appl. Opt.
40
,
4988
(
2001
).
4.
J. C. Snowdon, Handbook 128 (National Bureau of Standards, Washington, DC, 1979).
5.
J.
Giaime
,
P.
Saha
,
D.
Shoemaker
, and
L.
Sievers
,
Rev. Sci. Instrum.
67
,
208
(
1996
).
6.
G.
Ballardin
et al.,
Rev. Sci. Instrum.
72
,
3643
(
2001
).
7.
S. J.
Richman
,
J. A.
Giaime
,
D. B.
Newell
,
R. T.
Stebbins
,
P. L.
Bender
, and
J. E.
Faller
,
Rev. Sci. Instrum.
69
,
2531
(
1998
).
8.
R. K.
Cessaro
,
Bull. Seismol. Soc. Am.
84
,
142
(
1994
).
9.
J. Peterson, Open-file Report No. 93-322, U.S. Department of Interior Geological Survey, Albuquerque, New Mexico (1993).
10.
A. Rohay, Internal Document No. LIGO-C962289-B (1989).
11.
P. Lueg, U.S. Patent No. 2,043,416 (1934).
12.
D. R.
Morgan
,
J. Acoust. Soc. Am.
89
,
2362
(
1991
).
13.
R.
Abbott
et al.,
Class. Quantum Grav.
19
,
1591
(
2002
).
14.
B.
Willke
et al.,
Class. Quantum Grav.
19
,
1377
(
2002
).
15.
F. Raab and D. Coyne, Internal Document No. LIGO-T960187-01 (1996); http://www.ligo.caltech.edu/docs/T/T960187-01.pdf
16.
L. Ljung, System Identification Theory for the User, 2nd ed. (Prentice-Hall, Upper Saddle River, NJ, 1999).
17.
L. Ljung, System Identification Toolbox User’s Guide, version 5 (Mathworks, Natick, MA, 2001).
18.
B. Friedland, Control System Design; An Introduction to State-Space Methods (McGraw-Hill, Boston, MA, 1986).
19.
W. H. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1992).
This content is only available via PDF.
You do not currently have access to this content.