A pendulum type balance has been designed and fabricated to characterize solid propellant microthrusters. The thrust measurement system mainly consists of a rigid arm rotating freely around a pivot and a feedback control loop. The deflection of the arm produced by the applied thrust is detected using a high frequency transmitter and an antenna. The principle of the measurement is to compensate exactly the thrust force applied to the pendulum by injecting a current in a coil. The measurement of this current gives a perfect image of the thrust force. This article presents the design and performances of the balance. The thrust force measurement sensitivity is 25 μN and the system bandwidth is 40 Hz. Using this balance, single cylindrical thrusters have been characterized. The results gave less than a 1% error between experiment and theoretical evaluation.

1.
J. Mueller, L. Muller, and T. George, New Technology Report NPO-19926/9525.
2.
D. W. Youngner, S. T. Lu, E. Choueiri, J. B. Neider, R. E. Black, K. J. Graham, D. Fahey, R. Lucus, and X. Zhu, 14th Annual/USU Conference on Small Satellites, 2000.
3.
J. Mueller, I. Chakraborty, S. Vargo, C. Marrese, V. White, D. Bame, R. Reinicke, and J. Holzinger, IEEE Aerospace Conference, Big Sky, Montana, 1999.
4.
X.
Ye
,
F.
Tang
,
H.
Ding
, and
Z.
Zhou
,
Sens. Actuators A
89
,
159
(
2001
).
5.
E. V.
Murkerjee
,
A. P
Wallace
,
K. Y.
Yan
,
D. W.
Howard
,
R. L.
Smith
, and
S. D.
Collins
,
Sens. Actuators A
83
,
231
(
2000
).
6.
A. P.
London
,
A. A
Ayon
,
A. H.
Epstein
,
S. M.
Spearing
.
T.
Harrison
,
Y.
Peles
, and
J. L.
Kerrebrock
,
Sens. Actuator A
92
,
2997
(
2001
).
7.
C.
Rossi
,
T.
DoConto
,
D.
Estève
, and
B.
Larangot
,
Smart Mater. Struct.
10
,
1156
(
2001
).
8.
H. Helvejian, Microengineering Aerospace Systems (AIAA, 1999).
9.
W. A. de Groot, Propulsion Options for Primary Thrust and Attitude Control of Microspacecraft, NASA/CR-1998-206608.
10.
S. Orieux, C. Rossi, and D. Estève, Compact model based on a lumped parameter approach for the prediction of solid propellant micro rocket performance, LAAS Report No. 01403.
11.
A.
Sasoh
and
Y.
Arakawa
,
Rev. Sci. Instrum.
64
,
719
(
1993
).
12.
J. Bonnet, J. P. Marque, and M. Ory, Third International Conference Spacecraft Propulsion, October 2000, Cannes, France.
13.
T.
Haag
,
Rev. Sci. Instrum.
68
,
2060
(
1997
).
14.
A.
Franks
,
M.
Luty
,
C. J.
Robbie
, and
M.
Stedman
,
Nanotechnology
9
,
61
(
1998
).
15.
E. A.
Combin
,
J. Z.
Ziemer
,
E. Y.
Choueiri
, and
R. G.
Jahn
,
Rev. Sci. Instrum.
68
,
2339
(
1997
).
16.
C.
Rossi
,
M. Djafari
Rouhani
, and
D.
Estève
,
Sens. Actuators A
87
,
96
(
2000
).
17.
F. Paolucci, L. d’Agostino, and S. Burgoni, Proceedings of the Second European Spacecraft Propulsion Conference, 1997 (ESA SP-398, 1997), pp. 465–472.
18.
T. W.
Haag
,
Rev. Sci. Instrum.
62
,
1186
(
1991
).
19.
L.I.
Winkler
,
Rev. Sci. Instrum.
57
,
3019
(
1986
).
20.
M. Stedman, A. Franks, M. Luty, and C. J. Robbie, Proceedings of the Second European Spacecraft Propulsion Conference, 1997 (ESA SP-398, 1997), pp. 461–464.
21.
A.
Sasoh
and
Y.
Arakawa
,
Rev. Sci. Instrum.
64
,
719
(
1993
).
22.
Y.
Katagiri
and
K.
Itao
,
Appl. Opt.
37
,
7193
(
1998
).
23.
G. F.
Willmes
and
R. L.
Burton
,
J. Propul. Power
15
,
440
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.